![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxpreclem1 | Structured version Visualization version GIF version |
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
finxpreclem1 | ⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑋〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2727 | . . 3 ⊢ (𝑋 ∈ 𝑈 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))) | |
2 | eleq1a 2822 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → (𝑥 = 𝑋 → 𝑥 ∈ 𝑈)) | |
3 | 2 | anim2d 611 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → ((𝑛 = 1o ∧ 𝑥 = 𝑋) → (𝑛 = 1o ∧ 𝑥 ∈ 𝑈))) |
4 | iftrue 4529 | . . . . 5 ⊢ ((𝑛 = 1o ∧ 𝑥 ∈ 𝑈) → if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅) | |
5 | 3, 4 | syl6 35 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → ((𝑛 = 1o ∧ 𝑥 = 𝑋) → if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅)) |
6 | 5 | imp 406 | . . 3 ⊢ ((𝑋 ∈ 𝑈 ∧ (𝑛 = 1o ∧ 𝑥 = 𝑋)) → if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅) |
7 | 1onn 8641 | . . . 4 ⊢ 1o ∈ ω | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 1o ∈ ω) |
9 | elex 3487 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
10 | 0ex 5300 | . . . 4 ⊢ ∅ ∈ V | |
11 | 10 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ∅ ∈ V) |
12 | 1, 6, 8, 9, 11 | ovmpod 7556 | . 2 ⊢ (𝑋 ∈ 𝑈 → (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))𝑋) = ∅) |
13 | df-ov 7408 | . 2 ⊢ (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))𝑋) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑋〉) | |
14 | 12, 13 | eqtr3di 2781 | 1 ⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑋〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∅c0 4317 ifcif 4523 〈cop 4629 ∪ cuni 4902 × cxp 5667 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 ωcom 7852 1st c1st 7972 1oc1o 8460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1o 8467 |
This theorem is referenced by: finxp1o 36780 |
Copyright terms: Public domain | W3C validator |