| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > finxpreclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.) |
| Ref | Expression |
|---|---|
| finxpreclem1 | ⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑋〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . 3 ⊢ (𝑋 ∈ 𝑈 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))) | |
| 2 | eleq1a 2823 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → (𝑥 = 𝑋 → 𝑥 ∈ 𝑈)) | |
| 3 | 2 | anim2d 612 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → ((𝑛 = 1o ∧ 𝑥 = 𝑋) → (𝑛 = 1o ∧ 𝑥 ∈ 𝑈))) |
| 4 | iftrue 4490 | . . . . 5 ⊢ ((𝑛 = 1o ∧ 𝑥 ∈ 𝑈) → if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅) | |
| 5 | 3, 4 | syl6 35 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → ((𝑛 = 1o ∧ 𝑥 = 𝑋) → if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅)) |
| 6 | 5 | imp 406 | . . 3 ⊢ ((𝑋 ∈ 𝑈 ∧ (𝑛 = 1o ∧ 𝑥 = 𝑋)) → if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅) |
| 7 | 1onn 8581 | . . . 4 ⊢ 1o ∈ ω | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 1o ∈ ω) |
| 9 | elex 3465 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
| 10 | 0ex 5257 | . . . 4 ⊢ ∅ ∈ V | |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ∅ ∈ V) |
| 12 | 1, 6, 8, 9, 11 | ovmpod 7521 | . 2 ⊢ (𝑋 ∈ 𝑈 → (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))𝑋) = ∅) |
| 13 | df-ov 7372 | . 2 ⊢ (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))𝑋) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑋〉) | |
| 14 | 12, 13 | eqtr3di 2779 | 1 ⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑋〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 ifcif 4484 〈cop 4591 ∪ cuni 4867 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 ωcom 7822 1st c1st 7945 1oc1o 8404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1o 8411 |
| This theorem is referenced by: finxp1o 37353 |
| Copyright terms: Public domain | W3C validator |