Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpreclem1 Structured version   Visualization version   GIF version

Theorem finxpreclem1 35547
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
finxpreclem1 (𝑋𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩))
Distinct variable groups:   𝑈,𝑛,𝑥   𝑛,𝑋,𝑥

Proof of Theorem finxpreclem1
StepHypRef Expression
1 eqidd 2739 . . 3 (𝑋𝑈 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))))
2 eleq1a 2834 . . . . . 6 (𝑋𝑈 → (𝑥 = 𝑋𝑥𝑈))
32anim2d 612 . . . . 5 (𝑋𝑈 → ((𝑛 = 1o𝑥 = 𝑋) → (𝑛 = 1o𝑥𝑈)))
4 iftrue 4467 . . . . 5 ((𝑛 = 1o𝑥𝑈) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ∅)
53, 4syl6 35 . . . 4 (𝑋𝑈 → ((𝑛 = 1o𝑥 = 𝑋) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ∅))
65imp 407 . . 3 ((𝑋𝑈 ∧ (𝑛 = 1o𝑥 = 𝑋)) → if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)) = ∅)
7 1onn 8459 . . . 4 1o ∈ ω
87a1i 11 . . 3 (𝑋𝑈 → 1o ∈ ω)
9 elex 3449 . . 3 (𝑋𝑈𝑋 ∈ V)
10 0ex 5231 . . . 4 ∅ ∈ V
1110a1i 11 . . 3 (𝑋𝑈 → ∅ ∈ V)
121, 6, 8, 9, 11ovmpod 7417 . 2 (𝑋𝑈 → (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = ∅)
13 df-ov 7272 . 2 (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))𝑋) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩)
1412, 13eqtr3di 2793 1 (𝑋𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))‘⟨1o, 𝑋⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3431  c0 4258  ifcif 4461  cop 4569   cuni 4841   × cxp 5584  cfv 6428  (class class class)co 7269  cmpo 7271  ωcom 7704  1st c1st 7820  1oc1o 8279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-sbc 3718  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5076  df-opab 5138  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fv 6436  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1o 8286
This theorem is referenced by:  finxp1o  35550
  Copyright terms: Public domain W3C validator