![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxpreclem1 | Structured version Visualization version GIF version |
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
finxpreclem1 | ⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1𝑜, 𝑋〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6879 | . 2 ⊢ (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))𝑋) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1𝑜, 𝑋〉) | |
2 | eqidd 2798 | . . 3 ⊢ (𝑋 ∈ 𝑈 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))) | |
3 | eleq1a 2871 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → (𝑥 = 𝑋 → 𝑥 ∈ 𝑈)) | |
4 | 3 | anim2d 606 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → ((𝑛 = 1𝑜 ∧ 𝑥 = 𝑋) → (𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈))) |
5 | iftrue 4281 | . . . . 5 ⊢ ((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈) → if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅) | |
6 | 4, 5 | syl6 35 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → ((𝑛 = 1𝑜 ∧ 𝑥 = 𝑋) → if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅)) |
7 | 6 | imp 396 | . . 3 ⊢ ((𝑋 ∈ 𝑈 ∧ (𝑛 = 1𝑜 ∧ 𝑥 = 𝑋)) → if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅) |
8 | 1onn 7957 | . . . 4 ⊢ 1𝑜 ∈ ω | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 1𝑜 ∈ ω) |
10 | elex 3398 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
11 | 0ex 4982 | . . . 4 ⊢ ∅ ∈ V | |
12 | 11 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ∅ ∈ V) |
13 | 2, 7, 9, 10, 12 | ovmpt2d 7020 | . 2 ⊢ (𝑋 ∈ 𝑈 → (1𝑜(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))𝑋) = ∅) |
14 | 1, 13 | syl5reqr 2846 | 1 ⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1𝑜 ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1𝑜, 𝑋〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3383 ∅c0 4113 ifcif 4275 〈cop 4372 ∪ cuni 4626 × cxp 5308 ‘cfv 6099 (class class class)co 6876 ↦ cmpt2 6878 ωcom 7297 1st c1st 7397 1𝑜c1o 7790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 ax-un 7181 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1o 7797 |
This theorem is referenced by: finxp1o 33719 |
Copyright terms: Public domain | W3C validator |