Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > finxpreclem1 | Structured version Visualization version GIF version |
Description: Lemma for ↑↑ recursion theorems. (Contributed by ML, 17-Oct-2020.) |
Ref | Expression |
---|---|
finxpreclem1 | ⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑋〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . . 3 ⊢ (𝑋 ∈ 𝑈 → (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))) = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))) | |
2 | eleq1a 2834 | . . . . . 6 ⊢ (𝑋 ∈ 𝑈 → (𝑥 = 𝑋 → 𝑥 ∈ 𝑈)) | |
3 | 2 | anim2d 611 | . . . . 5 ⊢ (𝑋 ∈ 𝑈 → ((𝑛 = 1o ∧ 𝑥 = 𝑋) → (𝑛 = 1o ∧ 𝑥 ∈ 𝑈))) |
4 | iftrue 4462 | . . . . 5 ⊢ ((𝑛 = 1o ∧ 𝑥 ∈ 𝑈) → if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅) | |
5 | 3, 4 | syl6 35 | . . . 4 ⊢ (𝑋 ∈ 𝑈 → ((𝑛 = 1o ∧ 𝑥 = 𝑋) → if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅)) |
6 | 5 | imp 406 | . . 3 ⊢ ((𝑋 ∈ 𝑈 ∧ (𝑛 = 1o ∧ 𝑥 = 𝑋)) → if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)) = ∅) |
7 | 1onn 8432 | . . . 4 ⊢ 1o ∈ ω | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 1o ∈ ω) |
9 | elex 3440 | . . 3 ⊢ (𝑋 ∈ 𝑈 → 𝑋 ∈ V) | |
10 | 0ex 5226 | . . . 4 ⊢ ∅ ∈ V | |
11 | 10 | a1i 11 | . . 3 ⊢ (𝑋 ∈ 𝑈 → ∅ ∈ V) |
12 | 1, 6, 8, 9, 11 | ovmpod 7403 | . 2 ⊢ (𝑋 ∈ 𝑈 → (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))𝑋) = ∅) |
13 | df-ov 7258 | . 2 ⊢ (1o(𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))𝑋) = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑋〉) | |
14 | 12, 13 | eqtr3di 2794 | 1 ⊢ (𝑋 ∈ 𝑈 → ∅ = ((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉)))‘〈1o, 𝑋〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ifcif 4456 〈cop 4564 ∪ cuni 4836 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ωcom 7687 1st c1st 7802 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1o 8267 |
This theorem is referenced by: finxp1o 35490 |
Copyright terms: Public domain | W3C validator |