| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madef | Structured version Visualization version GIF version | ||
| Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| madef | ⊢ M :On⟶𝒫 No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-made 27786 | . . 3 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
| 2 | 1 | tfr1 8316 | . 2 ⊢ M Fn On |
| 3 | madeval2 27792 | . . . . . . 7 ⊢ (𝑥 ∈ On → ( M ‘𝑥) = {𝑦 ∈ No ∣ ∃𝑧 ∈ 𝒫 ∪ ( M “ 𝑥)∃𝑤 ∈ 𝒫 ∪ ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)}) | |
| 4 | ssrab2 4030 | . . . . . . 7 ⊢ {𝑦 ∈ No ∣ ∃𝑧 ∈ 𝒫 ∪ ( M “ 𝑥)∃𝑤 ∈ 𝒫 ∪ ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)} ⊆ No | |
| 5 | 3, 4 | eqsstrdi 3979 | . . . . . 6 ⊢ (𝑥 ∈ On → ( M ‘𝑥) ⊆ No ) |
| 6 | sseq1 3960 | . . . . . 6 ⊢ (𝑦 = ( M ‘𝑥) → (𝑦 ⊆ No ↔ ( M ‘𝑥) ⊆ No )) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ On → (𝑦 = ( M ‘𝑥) → 𝑦 ⊆ No )) |
| 8 | 7 | rexlimiv 3126 | . . . 4 ⊢ (∃𝑥 ∈ On 𝑦 = ( M ‘𝑥) → 𝑦 ⊆ No ) |
| 9 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 10 | eqeq1 2735 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 = ( M ‘𝑥) ↔ 𝑦 = ( M ‘𝑥))) | |
| 11 | 10 | rexbidv 3156 | . . . . 5 ⊢ (𝑧 = 𝑦 → (∃𝑥 ∈ On 𝑧 = ( M ‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥))) |
| 12 | fnrnfv 6881 | . . . . . 6 ⊢ ( M Fn On → ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)}) | |
| 13 | 2, 12 | ax-mp 5 | . . . . 5 ⊢ ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)} |
| 14 | 9, 11, 13 | elab2 3638 | . . . 4 ⊢ (𝑦 ∈ ran M ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥)) |
| 15 | velpw 4555 | . . . 4 ⊢ (𝑦 ∈ 𝒫 No ↔ 𝑦 ⊆ No ) | |
| 16 | 8, 14, 15 | 3imtr4i 292 | . . 3 ⊢ (𝑦 ∈ ran M → 𝑦 ∈ 𝒫 No ) |
| 17 | 16 | ssriv 3938 | . 2 ⊢ ran M ⊆ 𝒫 No |
| 18 | df-f 6485 | . 2 ⊢ ( M :On⟶𝒫 No ↔ ( M Fn On ∧ ran M ⊆ 𝒫 No )) | |
| 19 | 2, 17, 18 | mpbir2an 711 | 1 ⊢ M :On⟶𝒫 No |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {crab 3395 Vcvv 3436 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 class class class wbr 5091 ↦ cmpt 5172 × cxp 5614 ran crn 5617 “ cima 5619 Oncon0 6306 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 No csur 27576 <<s csslt 27718 |s cscut 27720 M cmade 27781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-2o 8386 df-no 27579 df-slt 27580 df-bday 27581 df-sslt 27719 df-scut 27721 df-made 27786 |
| This theorem is referenced by: oldf 27796 newf 27797 madessno 27799 elmade 27810 elold 27812 old1 27818 madess 27819 madeoldsuc 27828 madebdayim 27831 madefi 27856 oldfi 27857 |
| Copyright terms: Public domain | W3C validator |