MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madef Structured version   Visualization version   GIF version

Theorem madef 27795
Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
madef M :On⟶𝒫 No

Proof of Theorem madef
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-made 27786 . . 3 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
21tfr1 8316 . 2 M Fn On
3 madeval2 27792 . . . . . . 7 (𝑥 ∈ On → ( M ‘𝑥) = {𝑦 No ∣ ∃𝑧 ∈ 𝒫 ( M “ 𝑥)∃𝑤 ∈ 𝒫 ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)})
4 ssrab2 4030 . . . . . . 7 {𝑦 No ∣ ∃𝑧 ∈ 𝒫 ( M “ 𝑥)∃𝑤 ∈ 𝒫 ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)} ⊆ No
53, 4eqsstrdi 3979 . . . . . 6 (𝑥 ∈ On → ( M ‘𝑥) ⊆ No )
6 sseq1 3960 . . . . . 6 (𝑦 = ( M ‘𝑥) → (𝑦 No ↔ ( M ‘𝑥) ⊆ No ))
75, 6syl5ibrcom 247 . . . . 5 (𝑥 ∈ On → (𝑦 = ( M ‘𝑥) → 𝑦 No ))
87rexlimiv 3126 . . . 4 (∃𝑥 ∈ On 𝑦 = ( M ‘𝑥) → 𝑦 No )
9 vex 3440 . . . . 5 𝑦 ∈ V
10 eqeq1 2735 . . . . . 6 (𝑧 = 𝑦 → (𝑧 = ( M ‘𝑥) ↔ 𝑦 = ( M ‘𝑥)))
1110rexbidv 3156 . . . . 5 (𝑧 = 𝑦 → (∃𝑥 ∈ On 𝑧 = ( M ‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥)))
12 fnrnfv 6881 . . . . . 6 ( M Fn On → ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)})
132, 12ax-mp 5 . . . . 5 ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)}
149, 11, 13elab2 3638 . . . 4 (𝑦 ∈ ran M ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥))
15 velpw 4555 . . . 4 (𝑦 ∈ 𝒫 No 𝑦 No )
168, 14, 153imtr4i 292 . . 3 (𝑦 ∈ ran M → 𝑦 ∈ 𝒫 No )
1716ssriv 3938 . 2 ran M ⊆ 𝒫 No
18 df-f 6485 . 2 ( M :On⟶𝒫 No ↔ ( M Fn On ∧ ran M ⊆ 𝒫 No ))
192, 17, 18mpbir2an 711 1 M :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {crab 3395  Vcvv 3436  wss 3902  𝒫 cpw 4550   cuni 4859   class class class wbr 5091  cmpt 5172   × cxp 5614  ran crn 5617  cima 5619  Oncon0 6306   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346   No csur 27576   <<s csslt 27718   |s cscut 27720   M cmade 27781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-2o 8386  df-no 27579  df-slt 27580  df-bday 27581  df-sslt 27719  df-scut 27721  df-made 27786
This theorem is referenced by:  oldf  27796  newf  27797  madessno  27799  elmade  27810  elold  27812  old1  27818  madess  27819  madeoldsuc  27828  madebdayim  27831  madefi  27856  oldfi  27857
  Copyright terms: Public domain W3C validator