Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > madef | Structured version Visualization version GIF version |
Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
madef | ⊢ M :On⟶𝒫 No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-made 34010 | . . 3 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
2 | 1 | tfr1 8212 | . 2 ⊢ M Fn On |
3 | madeval2 34016 | . . . . . . 7 ⊢ (𝑥 ∈ On → ( M ‘𝑥) = {𝑦 ∈ No ∣ ∃𝑧 ∈ 𝒫 ∪ ( M “ 𝑥)∃𝑤 ∈ 𝒫 ∪ ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)}) | |
4 | ssrab2 4017 | . . . . . . 7 ⊢ {𝑦 ∈ No ∣ ∃𝑧 ∈ 𝒫 ∪ ( M “ 𝑥)∃𝑤 ∈ 𝒫 ∪ ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)} ⊆ No | |
5 | 3, 4 | eqsstrdi 3979 | . . . . . 6 ⊢ (𝑥 ∈ On → ( M ‘𝑥) ⊆ No ) |
6 | sseq1 3950 | . . . . . 6 ⊢ (𝑦 = ( M ‘𝑥) → (𝑦 ⊆ No ↔ ( M ‘𝑥) ⊆ No )) | |
7 | 5, 6 | syl5ibrcom 246 | . . . . 5 ⊢ (𝑥 ∈ On → (𝑦 = ( M ‘𝑥) → 𝑦 ⊆ No )) |
8 | 7 | rexlimiv 3210 | . . . 4 ⊢ (∃𝑥 ∈ On 𝑦 = ( M ‘𝑥) → 𝑦 ⊆ No ) |
9 | vex 3434 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | eqeq1 2743 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 = ( M ‘𝑥) ↔ 𝑦 = ( M ‘𝑥))) | |
11 | 10 | rexbidv 3227 | . . . . 5 ⊢ (𝑧 = 𝑦 → (∃𝑥 ∈ On 𝑧 = ( M ‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥))) |
12 | fnrnfv 6823 | . . . . . 6 ⊢ ( M Fn On → ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)}) | |
13 | 2, 12 | ax-mp 5 | . . . . 5 ⊢ ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)} |
14 | 9, 11, 13 | elab2 3614 | . . . 4 ⊢ (𝑦 ∈ ran M ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥)) |
15 | velpw 4543 | . . . 4 ⊢ (𝑦 ∈ 𝒫 No ↔ 𝑦 ⊆ No ) | |
16 | 8, 14, 15 | 3imtr4i 291 | . . 3 ⊢ (𝑦 ∈ ran M → 𝑦 ∈ 𝒫 No ) |
17 | 16 | ssriv 3929 | . 2 ⊢ ran M ⊆ 𝒫 No |
18 | df-f 6434 | . 2 ⊢ ( M :On⟶𝒫 No ↔ ( M Fn On ∧ ran M ⊆ 𝒫 No )) | |
19 | 2, 17, 18 | mpbir2an 707 | 1 ⊢ M :On⟶𝒫 No |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 ∃wrex 3066 {crab 3069 Vcvv 3430 ⊆ wss 3891 𝒫 cpw 4538 ∪ cuni 4844 class class class wbr 5078 ↦ cmpt 5161 × cxp 5586 ran crn 5589 “ cima 5591 Oncon0 6263 Fn wfn 6425 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 No csur 33822 <<s csslt 33954 |s cscut 33956 M cmade 34005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-1o 8281 df-2o 8282 df-no 33825 df-slt 33826 df-bday 33827 df-sslt 33955 df-scut 33957 df-made 34010 |
This theorem is referenced by: oldf 34020 newf 34021 madessno 34023 elmade 34030 elold 34032 madess 34038 madeoldsuc 34046 madebdayim 34049 |
Copyright terms: Public domain | W3C validator |