![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > madef | Structured version Visualization version GIF version |
Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
madef | ⊢ M :On⟶𝒫 No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-made 27904 | . . 3 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
2 | 1 | tfr1 8453 | . 2 ⊢ M Fn On |
3 | madeval2 27910 | . . . . . . 7 ⊢ (𝑥 ∈ On → ( M ‘𝑥) = {𝑦 ∈ No ∣ ∃𝑧 ∈ 𝒫 ∪ ( M “ 𝑥)∃𝑤 ∈ 𝒫 ∪ ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)}) | |
4 | ssrab2 4103 | . . . . . . 7 ⊢ {𝑦 ∈ No ∣ ∃𝑧 ∈ 𝒫 ∪ ( M “ 𝑥)∃𝑤 ∈ 𝒫 ∪ ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)} ⊆ No | |
5 | 3, 4 | eqsstrdi 4063 | . . . . . 6 ⊢ (𝑥 ∈ On → ( M ‘𝑥) ⊆ No ) |
6 | sseq1 4034 | . . . . . 6 ⊢ (𝑦 = ( M ‘𝑥) → (𝑦 ⊆ No ↔ ( M ‘𝑥) ⊆ No )) | |
7 | 5, 6 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ On → (𝑦 = ( M ‘𝑥) → 𝑦 ⊆ No )) |
8 | 7 | rexlimiv 3154 | . . . 4 ⊢ (∃𝑥 ∈ On 𝑦 = ( M ‘𝑥) → 𝑦 ⊆ No ) |
9 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | eqeq1 2744 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 = ( M ‘𝑥) ↔ 𝑦 = ( M ‘𝑥))) | |
11 | 10 | rexbidv 3185 | . . . . 5 ⊢ (𝑧 = 𝑦 → (∃𝑥 ∈ On 𝑧 = ( M ‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥))) |
12 | fnrnfv 6981 | . . . . . 6 ⊢ ( M Fn On → ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)}) | |
13 | 2, 12 | ax-mp 5 | . . . . 5 ⊢ ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)} |
14 | 9, 11, 13 | elab2 3698 | . . . 4 ⊢ (𝑦 ∈ ran M ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥)) |
15 | velpw 4627 | . . . 4 ⊢ (𝑦 ∈ 𝒫 No ↔ 𝑦 ⊆ No ) | |
16 | 8, 14, 15 | 3imtr4i 292 | . . 3 ⊢ (𝑦 ∈ ran M → 𝑦 ∈ 𝒫 No ) |
17 | 16 | ssriv 4012 | . 2 ⊢ ran M ⊆ 𝒫 No |
18 | df-f 6577 | . 2 ⊢ ( M :On⟶𝒫 No ↔ ( M Fn On ∧ ran M ⊆ 𝒫 No )) | |
19 | 2, 17, 18 | mpbir2an 710 | 1 ⊢ M :On⟶𝒫 No |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 {crab 3443 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 × cxp 5698 ran crn 5701 “ cima 5703 Oncon0 6395 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 No csur 27702 <<s csslt 27843 |s cscut 27845 M cmade 27899 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-1o 8522 df-2o 8523 df-no 27705 df-slt 27706 df-bday 27707 df-sslt 27844 df-scut 27846 df-made 27904 |
This theorem is referenced by: oldf 27914 newf 27915 madessno 27917 elmade 27924 elold 27926 old1 27932 madess 27933 madeoldsuc 27941 madebdayim 27944 madefi 27968 oldfi 27969 |
Copyright terms: Public domain | W3C validator |