![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > madef | Structured version Visualization version GIF version |
Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
madef | β’ M :OnβΆπ« No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-made 27331 | . . 3 β’ M = recs((π₯ β V β¦ ( |s β (π« βͺ ran π₯ Γ π« βͺ ran π₯)))) | |
2 | 1 | tfr1 8393 | . 2 β’ M Fn On |
3 | madeval2 27337 | . . . . . . 7 β’ (π₯ β On β ( M βπ₯) = {π¦ β No β£ βπ§ β π« βͺ ( M β π₯)βπ€ β π« βͺ ( M β π₯)(π§ <<s π€ β§ (π§ |s π€) = π¦)}) | |
4 | ssrab2 4076 | . . . . . . 7 β’ {π¦ β No β£ βπ§ β π« βͺ ( M β π₯)βπ€ β π« βͺ ( M β π₯)(π§ <<s π€ β§ (π§ |s π€) = π¦)} β No | |
5 | 3, 4 | eqsstrdi 4035 | . . . . . 6 β’ (π₯ β On β ( M βπ₯) β No ) |
6 | sseq1 4006 | . . . . . 6 β’ (π¦ = ( M βπ₯) β (π¦ β No β ( M βπ₯) β No )) | |
7 | 5, 6 | syl5ibrcom 246 | . . . . 5 β’ (π₯ β On β (π¦ = ( M βπ₯) β π¦ β No )) |
8 | 7 | rexlimiv 3148 | . . . 4 β’ (βπ₯ β On π¦ = ( M βπ₯) β π¦ β No ) |
9 | vex 3478 | . . . . 5 β’ π¦ β V | |
10 | eqeq1 2736 | . . . . . 6 β’ (π§ = π¦ β (π§ = ( M βπ₯) β π¦ = ( M βπ₯))) | |
11 | 10 | rexbidv 3178 | . . . . 5 β’ (π§ = π¦ β (βπ₯ β On π§ = ( M βπ₯) β βπ₯ β On π¦ = ( M βπ₯))) |
12 | fnrnfv 6948 | . . . . . 6 β’ ( M Fn On β ran M = {π§ β£ βπ₯ β On π§ = ( M βπ₯)}) | |
13 | 2, 12 | ax-mp 5 | . . . . 5 β’ ran M = {π§ β£ βπ₯ β On π§ = ( M βπ₯)} |
14 | 9, 11, 13 | elab2 3671 | . . . 4 β’ (π¦ β ran M β βπ₯ β On π¦ = ( M βπ₯)) |
15 | velpw 4606 | . . . 4 β’ (π¦ β π« No β π¦ β No ) | |
16 | 8, 14, 15 | 3imtr4i 291 | . . 3 β’ (π¦ β ran M β π¦ β π« No ) |
17 | 16 | ssriv 3985 | . 2 β’ ran M β π« No |
18 | df-f 6544 | . 2 β’ ( M :OnβΆπ« No β ( M Fn On β§ ran M β π« No )) | |
19 | 2, 17, 18 | mpbir2an 709 | 1 β’ M :OnβΆπ« No |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 β wcel 2106 {cab 2709 βwrex 3070 {crab 3432 Vcvv 3474 β wss 3947 π« cpw 4601 βͺ cuni 4907 class class class wbr 5147 β¦ cmpt 5230 Γ cxp 5673 ran crn 5676 β cima 5678 Oncon0 6361 Fn wfn 6535 βΆwf 6536 βcfv 6540 (class class class)co 7405 No csur 27132 <<s csslt 27271 |s cscut 27273 M cmade 27326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-1o 8462 df-2o 8463 df-no 27135 df-slt 27136 df-bday 27137 df-sslt 27272 df-scut 27274 df-made 27331 |
This theorem is referenced by: oldf 27341 newf 27342 madessno 27344 elmade 27351 elold 27353 old1 27359 madess 27360 madeoldsuc 27368 madebdayim 27371 |
Copyright terms: Public domain | W3C validator |