Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madef Structured version   Visualization version   GIF version

Theorem madef 33681
Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
madef M :On⟶𝒫 No

Proof of Theorem madef
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-made 33672 . . 3 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
21tfr1 8062 . 2 M Fn On
3 madeval2 33678 . . . . . . 7 (𝑥 ∈ On → ( M ‘𝑥) = {𝑦 No ∣ ∃𝑧 ∈ 𝒫 ( M “ 𝑥)∃𝑤 ∈ 𝒫 ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)})
4 ssrab2 3969 . . . . . . 7 {𝑦 No ∣ ∃𝑧 ∈ 𝒫 ( M “ 𝑥)∃𝑤 ∈ 𝒫 ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)} ⊆ No
53, 4eqsstrdi 3931 . . . . . 6 (𝑥 ∈ On → ( M ‘𝑥) ⊆ No )
6 sseq1 3902 . . . . . 6 (𝑦 = ( M ‘𝑥) → (𝑦 No ↔ ( M ‘𝑥) ⊆ No ))
75, 6syl5ibrcom 250 . . . . 5 (𝑥 ∈ On → (𝑦 = ( M ‘𝑥) → 𝑦 No ))
87rexlimiv 3190 . . . 4 (∃𝑥 ∈ On 𝑦 = ( M ‘𝑥) → 𝑦 No )
9 vex 3402 . . . . 5 𝑦 ∈ V
10 eqeq1 2742 . . . . . 6 (𝑧 = 𝑦 → (𝑧 = ( M ‘𝑥) ↔ 𝑦 = ( M ‘𝑥)))
1110rexbidv 3207 . . . . 5 (𝑧 = 𝑦 → (∃𝑥 ∈ On 𝑧 = ( M ‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥)))
12 fnrnfv 6729 . . . . . 6 ( M Fn On → ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)})
132, 12ax-mp 5 . . . . 5 ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)}
149, 11, 13elab2 3577 . . . 4 (𝑦 ∈ ran M ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥))
15 velpw 4493 . . . 4 (𝑦 ∈ 𝒫 No 𝑦 No )
168, 14, 153imtr4i 295 . . 3 (𝑦 ∈ ran M → 𝑦 ∈ 𝒫 No )
1716ssriv 3881 . 2 ran M ⊆ 𝒫 No
18 df-f 6343 . 2 ( M :On⟶𝒫 No ↔ ( M Fn On ∧ ran M ⊆ 𝒫 No ))
192, 17, 18mpbir2an 711 1 M :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wcel 2114  {cab 2716  wrex 3054  {crab 3057  Vcvv 3398  wss 3843  𝒫 cpw 4488   cuni 4796   class class class wbr 5030  cmpt 5110   × cxp 5523  ran crn 5526  cima 5528  Oncon0 6172   Fn wfn 6334  wf 6335  cfv 6339  (class class class)co 7170   No csur 33484   <<s csslt 33616   |s cscut 33618   M cmade 33667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-wrecs 7976  df-recs 8037  df-1o 8131  df-2o 8132  df-no 33487  df-slt 33488  df-bday 33489  df-sslt 33617  df-scut 33619  df-made 33672
This theorem is referenced by:  oldf  33682  newf  33683  elmade  33688  elold  33690  madeoldsuc  33705
  Copyright terms: Public domain W3C validator