![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > madef | Structured version Visualization version GIF version |
Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
madef | β’ M :OnβΆπ« No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-made 27577 | . . 3 β’ M = recs((π₯ β V β¦ ( |s β (π« βͺ ran π₯ Γ π« βͺ ran π₯)))) | |
2 | 1 | tfr1 8401 | . 2 β’ M Fn On |
3 | madeval2 27583 | . . . . . . 7 β’ (π₯ β On β ( M βπ₯) = {π¦ β No β£ βπ§ β π« βͺ ( M β π₯)βπ€ β π« βͺ ( M β π₯)(π§ <<s π€ β§ (π§ |s π€) = π¦)}) | |
4 | ssrab2 4078 | . . . . . . 7 β’ {π¦ β No β£ βπ§ β π« βͺ ( M β π₯)βπ€ β π« βͺ ( M β π₯)(π§ <<s π€ β§ (π§ |s π€) = π¦)} β No | |
5 | 3, 4 | eqsstrdi 4037 | . . . . . 6 β’ (π₯ β On β ( M βπ₯) β No ) |
6 | sseq1 4008 | . . . . . 6 β’ (π¦ = ( M βπ₯) β (π¦ β No β ( M βπ₯) β No )) | |
7 | 5, 6 | syl5ibrcom 246 | . . . . 5 β’ (π₯ β On β (π¦ = ( M βπ₯) β π¦ β No )) |
8 | 7 | rexlimiv 3146 | . . . 4 β’ (βπ₯ β On π¦ = ( M βπ₯) β π¦ β No ) |
9 | vex 3476 | . . . . 5 β’ π¦ β V | |
10 | eqeq1 2734 | . . . . . 6 β’ (π§ = π¦ β (π§ = ( M βπ₯) β π¦ = ( M βπ₯))) | |
11 | 10 | rexbidv 3176 | . . . . 5 β’ (π§ = π¦ β (βπ₯ β On π§ = ( M βπ₯) β βπ₯ β On π¦ = ( M βπ₯))) |
12 | fnrnfv 6952 | . . . . . 6 β’ ( M Fn On β ran M = {π§ β£ βπ₯ β On π§ = ( M βπ₯)}) | |
13 | 2, 12 | ax-mp 5 | . . . . 5 β’ ran M = {π§ β£ βπ₯ β On π§ = ( M βπ₯)} |
14 | 9, 11, 13 | elab2 3673 | . . . 4 β’ (π¦ β ran M β βπ₯ β On π¦ = ( M βπ₯)) |
15 | velpw 4608 | . . . 4 β’ (π¦ β π« No β π¦ β No ) | |
16 | 8, 14, 15 | 3imtr4i 291 | . . 3 β’ (π¦ β ran M β π¦ β π« No ) |
17 | 16 | ssriv 3987 | . 2 β’ ran M β π« No |
18 | df-f 6548 | . 2 β’ ( M :OnβΆπ« No β ( M Fn On β§ ran M β π« No )) | |
19 | 2, 17, 18 | mpbir2an 707 | 1 β’ M :OnβΆπ« No |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 394 = wceq 1539 β wcel 2104 {cab 2707 βwrex 3068 {crab 3430 Vcvv 3472 β wss 3949 π« cpw 4603 βͺ cuni 4909 class class class wbr 5149 β¦ cmpt 5232 Γ cxp 5675 ran crn 5678 β cima 5680 Oncon0 6365 Fn wfn 6539 βΆwf 6540 βcfv 6544 (class class class)co 7413 No csur 27377 <<s csslt 27516 |s cscut 27518 M cmade 27572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-1o 8470 df-2o 8471 df-no 27380 df-slt 27381 df-bday 27382 df-sslt 27517 df-scut 27519 df-made 27577 |
This theorem is referenced by: oldf 27587 newf 27588 madessno 27590 elmade 27597 elold 27599 old1 27605 madess 27606 madeoldsuc 27614 madebdayim 27617 |
Copyright terms: Public domain | W3C validator |