| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madef | Structured version Visualization version GIF version | ||
| Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
| Ref | Expression |
|---|---|
| madef | ⊢ M :On⟶𝒫 No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-made 27755 | . . 3 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
| 2 | 1 | tfr1 8365 | . 2 ⊢ M Fn On |
| 3 | madeval2 27761 | . . . . . . 7 ⊢ (𝑥 ∈ On → ( M ‘𝑥) = {𝑦 ∈ No ∣ ∃𝑧 ∈ 𝒫 ∪ ( M “ 𝑥)∃𝑤 ∈ 𝒫 ∪ ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)}) | |
| 4 | ssrab2 4043 | . . . . . . 7 ⊢ {𝑦 ∈ No ∣ ∃𝑧 ∈ 𝒫 ∪ ( M “ 𝑥)∃𝑤 ∈ 𝒫 ∪ ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)} ⊆ No | |
| 5 | 3, 4 | eqsstrdi 3991 | . . . . . 6 ⊢ (𝑥 ∈ On → ( M ‘𝑥) ⊆ No ) |
| 6 | sseq1 3972 | . . . . . 6 ⊢ (𝑦 = ( M ‘𝑥) → (𝑦 ⊆ No ↔ ( M ‘𝑥) ⊆ No )) | |
| 7 | 5, 6 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ On → (𝑦 = ( M ‘𝑥) → 𝑦 ⊆ No )) |
| 8 | 7 | rexlimiv 3127 | . . . 4 ⊢ (∃𝑥 ∈ On 𝑦 = ( M ‘𝑥) → 𝑦 ⊆ No ) |
| 9 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 10 | eqeq1 2733 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 = ( M ‘𝑥) ↔ 𝑦 = ( M ‘𝑥))) | |
| 11 | 10 | rexbidv 3157 | . . . . 5 ⊢ (𝑧 = 𝑦 → (∃𝑥 ∈ On 𝑧 = ( M ‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥))) |
| 12 | fnrnfv 6920 | . . . . . 6 ⊢ ( M Fn On → ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)}) | |
| 13 | 2, 12 | ax-mp 5 | . . . . 5 ⊢ ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)} |
| 14 | 9, 11, 13 | elab2 3649 | . . . 4 ⊢ (𝑦 ∈ ran M ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥)) |
| 15 | velpw 4568 | . . . 4 ⊢ (𝑦 ∈ 𝒫 No ↔ 𝑦 ⊆ No ) | |
| 16 | 8, 14, 15 | 3imtr4i 292 | . . 3 ⊢ (𝑦 ∈ ran M → 𝑦 ∈ 𝒫 No ) |
| 17 | 16 | ssriv 3950 | . 2 ⊢ ran M ⊆ 𝒫 No |
| 18 | df-f 6515 | . 2 ⊢ ( M :On⟶𝒫 No ↔ ( M Fn On ∧ ran M ⊆ 𝒫 No )) | |
| 19 | 2, 17, 18 | mpbir2an 711 | 1 ⊢ M :On⟶𝒫 No |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {crab 3405 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 ran crn 5639 “ cima 5641 Oncon0 6332 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 No csur 27551 <<s csslt 27692 |s cscut 27694 M cmade 27750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sslt 27693 df-scut 27695 df-made 27755 |
| This theorem is referenced by: oldf 27765 newf 27766 madessno 27768 elmade 27779 elold 27781 old1 27787 madess 27788 madeoldsuc 27796 madebdayim 27799 madefi 27824 oldfi 27825 |
| Copyright terms: Public domain | W3C validator |