Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > madef | Structured version Visualization version GIF version |
Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.) |
Ref | Expression |
---|---|
madef | ⊢ M :On⟶𝒫 No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-made 33672 | . . 3 ⊢ M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ∪ ran 𝑥 × 𝒫 ∪ ran 𝑥)))) | |
2 | 1 | tfr1 8062 | . 2 ⊢ M Fn On |
3 | madeval2 33678 | . . . . . . 7 ⊢ (𝑥 ∈ On → ( M ‘𝑥) = {𝑦 ∈ No ∣ ∃𝑧 ∈ 𝒫 ∪ ( M “ 𝑥)∃𝑤 ∈ 𝒫 ∪ ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)}) | |
4 | ssrab2 3969 | . . . . . . 7 ⊢ {𝑦 ∈ No ∣ ∃𝑧 ∈ 𝒫 ∪ ( M “ 𝑥)∃𝑤 ∈ 𝒫 ∪ ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)} ⊆ No | |
5 | 3, 4 | eqsstrdi 3931 | . . . . . 6 ⊢ (𝑥 ∈ On → ( M ‘𝑥) ⊆ No ) |
6 | sseq1 3902 | . . . . . 6 ⊢ (𝑦 = ( M ‘𝑥) → (𝑦 ⊆ No ↔ ( M ‘𝑥) ⊆ No )) | |
7 | 5, 6 | syl5ibrcom 250 | . . . . 5 ⊢ (𝑥 ∈ On → (𝑦 = ( M ‘𝑥) → 𝑦 ⊆ No )) |
8 | 7 | rexlimiv 3190 | . . . 4 ⊢ (∃𝑥 ∈ On 𝑦 = ( M ‘𝑥) → 𝑦 ⊆ No ) |
9 | vex 3402 | . . . . 5 ⊢ 𝑦 ∈ V | |
10 | eqeq1 2742 | . . . . . 6 ⊢ (𝑧 = 𝑦 → (𝑧 = ( M ‘𝑥) ↔ 𝑦 = ( M ‘𝑥))) | |
11 | 10 | rexbidv 3207 | . . . . 5 ⊢ (𝑧 = 𝑦 → (∃𝑥 ∈ On 𝑧 = ( M ‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥))) |
12 | fnrnfv 6729 | . . . . . 6 ⊢ ( M Fn On → ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)}) | |
13 | 2, 12 | ax-mp 5 | . . . . 5 ⊢ ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)} |
14 | 9, 11, 13 | elab2 3577 | . . . 4 ⊢ (𝑦 ∈ ran M ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥)) |
15 | velpw 4493 | . . . 4 ⊢ (𝑦 ∈ 𝒫 No ↔ 𝑦 ⊆ No ) | |
16 | 8, 14, 15 | 3imtr4i 295 | . . 3 ⊢ (𝑦 ∈ ran M → 𝑦 ∈ 𝒫 No ) |
17 | 16 | ssriv 3881 | . 2 ⊢ ran M ⊆ 𝒫 No |
18 | df-f 6343 | . 2 ⊢ ( M :On⟶𝒫 No ↔ ( M Fn On ∧ ran M ⊆ 𝒫 No )) | |
19 | 2, 17, 18 | mpbir2an 711 | 1 ⊢ M :On⟶𝒫 No |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1542 ∈ wcel 2114 {cab 2716 ∃wrex 3054 {crab 3057 Vcvv 3398 ⊆ wss 3843 𝒫 cpw 4488 ∪ cuni 4796 class class class wbr 5030 ↦ cmpt 5110 × cxp 5523 ran crn 5526 “ cima 5528 Oncon0 6172 Fn wfn 6334 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 No csur 33484 <<s csslt 33616 |s cscut 33618 M cmade 33667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-wrecs 7976 df-recs 8037 df-1o 8131 df-2o 8132 df-no 33487 df-slt 33488 df-bday 33489 df-sslt 33617 df-scut 33619 df-made 33672 |
This theorem is referenced by: oldf 33682 newf 33683 elmade 33688 elold 33690 madeoldsuc 33705 |
Copyright terms: Public domain | W3C validator |