MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madef Structured version   Visualization version   GIF version

Theorem madef 27782
Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
madef M :On⟶𝒫 No

Proof of Theorem madef
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-made 27773 . . 3 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
21tfr1 8417 . 2 M Fn On
3 madeval2 27779 . . . . . . 7 (𝑥 ∈ On → ( M ‘𝑥) = {𝑦 No ∣ ∃𝑧 ∈ 𝒫 ( M “ 𝑥)∃𝑤 ∈ 𝒫 ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)})
4 ssrab2 4075 . . . . . . 7 {𝑦 No ∣ ∃𝑧 ∈ 𝒫 ( M “ 𝑥)∃𝑤 ∈ 𝒫 ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)} ⊆ No
53, 4eqsstrdi 4034 . . . . . 6 (𝑥 ∈ On → ( M ‘𝑥) ⊆ No )
6 sseq1 4005 . . . . . 6 (𝑦 = ( M ‘𝑥) → (𝑦 No ↔ ( M ‘𝑥) ⊆ No ))
75, 6syl5ibrcom 246 . . . . 5 (𝑥 ∈ On → (𝑦 = ( M ‘𝑥) → 𝑦 No ))
87rexlimiv 3145 . . . 4 (∃𝑥 ∈ On 𝑦 = ( M ‘𝑥) → 𝑦 No )
9 vex 3475 . . . . 5 𝑦 ∈ V
10 eqeq1 2732 . . . . . 6 (𝑧 = 𝑦 → (𝑧 = ( M ‘𝑥) ↔ 𝑦 = ( M ‘𝑥)))
1110rexbidv 3175 . . . . 5 (𝑧 = 𝑦 → (∃𝑥 ∈ On 𝑧 = ( M ‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥)))
12 fnrnfv 6958 . . . . . 6 ( M Fn On → ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)})
132, 12ax-mp 5 . . . . 5 ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)}
149, 11, 13elab2 3671 . . . 4 (𝑦 ∈ ran M ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥))
15 velpw 4608 . . . 4 (𝑦 ∈ 𝒫 No 𝑦 No )
168, 14, 153imtr4i 292 . . 3 (𝑦 ∈ ran M → 𝑦 ∈ 𝒫 No )
1716ssriv 3984 . 2 ran M ⊆ 𝒫 No
18 df-f 6552 . 2 ( M :On⟶𝒫 No ↔ ( M Fn On ∧ ran M ⊆ 𝒫 No ))
192, 17, 18mpbir2an 710 1 M :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wcel 2099  {cab 2705  wrex 3067  {crab 3429  Vcvv 3471  wss 3947  𝒫 cpw 4603   cuni 4908   class class class wbr 5148  cmpt 5231   × cxp 5676  ran crn 5679  cima 5681  Oncon0 6369   Fn wfn 6543  wf 6544  cfv 6548  (class class class)co 7420   No csur 27572   <<s csslt 27712   |s cscut 27714   M cmade 27768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-1o 8486  df-2o 8487  df-no 27575  df-slt 27576  df-bday 27577  df-sslt 27713  df-scut 27715  df-made 27773
This theorem is referenced by:  oldf  27783  newf  27784  madessno  27786  elmade  27793  elold  27795  old1  27801  madess  27802  madeoldsuc  27810  madebdayim  27813
  Copyright terms: Public domain W3C validator