MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madef Structured version   Visualization version   GIF version

Theorem madef 27764
Description: The made function is a function from ordinals to sets of surreals. (Contributed by Scott Fenton, 6-Aug-2024.)
Assertion
Ref Expression
madef M :On⟶𝒫 No

Proof of Theorem madef
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-made 27755 . . 3 M = recs((𝑥 ∈ V ↦ ( |s “ (𝒫 ran 𝑥 × 𝒫 ran 𝑥))))
21tfr1 8365 . 2 M Fn On
3 madeval2 27761 . . . . . . 7 (𝑥 ∈ On → ( M ‘𝑥) = {𝑦 No ∣ ∃𝑧 ∈ 𝒫 ( M “ 𝑥)∃𝑤 ∈ 𝒫 ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)})
4 ssrab2 4043 . . . . . . 7 {𝑦 No ∣ ∃𝑧 ∈ 𝒫 ( M “ 𝑥)∃𝑤 ∈ 𝒫 ( M “ 𝑥)(𝑧 <<s 𝑤 ∧ (𝑧 |s 𝑤) = 𝑦)} ⊆ No
53, 4eqsstrdi 3991 . . . . . 6 (𝑥 ∈ On → ( M ‘𝑥) ⊆ No )
6 sseq1 3972 . . . . . 6 (𝑦 = ( M ‘𝑥) → (𝑦 No ↔ ( M ‘𝑥) ⊆ No ))
75, 6syl5ibrcom 247 . . . . 5 (𝑥 ∈ On → (𝑦 = ( M ‘𝑥) → 𝑦 No ))
87rexlimiv 3127 . . . 4 (∃𝑥 ∈ On 𝑦 = ( M ‘𝑥) → 𝑦 No )
9 vex 3451 . . . . 5 𝑦 ∈ V
10 eqeq1 2733 . . . . . 6 (𝑧 = 𝑦 → (𝑧 = ( M ‘𝑥) ↔ 𝑦 = ( M ‘𝑥)))
1110rexbidv 3157 . . . . 5 (𝑧 = 𝑦 → (∃𝑥 ∈ On 𝑧 = ( M ‘𝑥) ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥)))
12 fnrnfv 6920 . . . . . 6 ( M Fn On → ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)})
132, 12ax-mp 5 . . . . 5 ran M = {𝑧 ∣ ∃𝑥 ∈ On 𝑧 = ( M ‘𝑥)}
149, 11, 13elab2 3649 . . . 4 (𝑦 ∈ ran M ↔ ∃𝑥 ∈ On 𝑦 = ( M ‘𝑥))
15 velpw 4568 . . . 4 (𝑦 ∈ 𝒫 No 𝑦 No )
168, 14, 153imtr4i 292 . . 3 (𝑦 ∈ ran M → 𝑦 ∈ 𝒫 No )
1716ssriv 3950 . 2 ran M ⊆ 𝒫 No
18 df-f 6515 . 2 ( M :On⟶𝒫 No ↔ ( M Fn On ∧ ran M ⊆ 𝒫 No ))
192, 17, 18mpbir2an 711 1 M :On⟶𝒫 No
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  cmpt 5188   × cxp 5636  ran crn 5639  cima 5641  Oncon0 6332   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387   No csur 27551   <<s csslt 27692   |s cscut 27694   M cmade 27750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695  df-made 27755
This theorem is referenced by:  oldf  27765  newf  27766  madessno  27768  elmade  27779  elold  27781  old1  27787  madess  27788  madeoldsuc  27796  madebdayim  27799  madefi  27824  oldfi  27825
  Copyright terms: Public domain W3C validator