![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco111x | Structured version Visualization version GIF version |
Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. An object is mapped by two functors in succession. (Contributed by Zhi Wang, 3-Oct-2025.) |
Ref | Expression |
---|---|
fuco11.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
fuco11.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
fuco11.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
fuco11.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
fuco111x.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
Ref | Expression |
---|---|
fuco111x | ⊢ (𝜑 → ((1st ‘(𝑂‘𝑈))‘𝑋) = (𝐾‘(𝐹‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fuco11.o | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
2 | fuco11.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
3 | fuco11.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
4 | fuco11.u | . . . 4 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
5 | 1, 2, 3, 4 | fuco111 48899 | . . 3 ⊢ (𝜑 → (1st ‘(𝑂‘𝑈)) = (𝐾 ∘ 𝐹)) |
6 | 5 | fveq1d 6916 | . 2 ⊢ (𝜑 → ((1st ‘(𝑂‘𝑈))‘𝑋) = ((𝐾 ∘ 𝐹)‘𝑋)) |
7 | eqid 2737 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
8 | eqid 2737 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
9 | 7, 8, 2 | funcf1 17926 | . . 3 ⊢ (𝜑 → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
10 | fuco111x.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) | |
11 | 9, 10 | fvco3d 7016 | . 2 ⊢ (𝜑 → ((𝐾 ∘ 𝐹)‘𝑋) = (𝐾‘(𝐹‘𝑋))) |
12 | 6, 11 | eqtrd 2777 | 1 ⊢ (𝜑 → ((1st ‘(𝑂‘𝑈))‘𝑋) = (𝐾‘(𝐹‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 〈cop 4640 class class class wbr 5151 ∘ ccom 5697 ‘cfv 6569 (class class class)co 7438 1st c1st 8020 Basecbs 17254 Func cfunc 17914 ∘F cfuco 48885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-map 8876 df-ixp 8946 df-func 17918 df-cofu 17920 df-fuco 48886 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |