| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco111 | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. (Contributed by Zhi Wang, 2-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco11.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco11.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| fuco11.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| fuco11.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| Ref | Expression |
|---|---|
| fuco111 | ⊢ (𝜑 → (1st ‘(𝑂‘𝑈)) = (𝐾 ∘ 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco11.o | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 2 | fuco11.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 3 | fuco11.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 4 | fuco11.u | . . . 4 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 6 | 1, 2, 3, 4, 5 | fuco11a 49314 | . . 3 ⊢ (𝜑 → (𝑂‘𝑈) = 〈(𝐾 ∘ 𝐹), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) |
| 7 | 6 | fveq2d 6830 | . 2 ⊢ (𝜑 → (1st ‘(𝑂‘𝑈)) = (1st ‘〈(𝐾 ∘ 𝐹), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉)) |
| 8 | relfunc 17787 | . . . . . 6 ⊢ Rel (𝐷 Func 𝐸) | |
| 9 | 8 | brrelex1i 5679 | . . . . 5 ⊢ (𝐾(𝐷 Func 𝐸)𝐿 → 𝐾 ∈ V) |
| 10 | 3, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ V) |
| 11 | relfunc 17787 | . . . . . 6 ⊢ Rel (𝐶 Func 𝐷) | |
| 12 | 11 | brrelex1i 5679 | . . . . 5 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐹 ∈ V) |
| 13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 14 | 10, 13 | coexd 7871 | . . 3 ⊢ (𝜑 → (𝐾 ∘ 𝐹) ∈ V) |
| 15 | fvex 6839 | . . . 4 ⊢ (Base‘𝐶) ∈ V | |
| 16 | 15, 15 | mpoex 8021 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) ∈ V |
| 17 | op1stg 7943 | . . 3 ⊢ (((𝐾 ∘ 𝐹) ∈ V ∧ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) ∈ V) → (1st ‘〈(𝐾 ∘ 𝐹), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) = (𝐾 ∘ 𝐹)) | |
| 18 | 14, 16, 17 | sylancl 586 | . 2 ⊢ (𝜑 → (1st ‘〈(𝐾 ∘ 𝐹), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) = (𝐾 ∘ 𝐹)) |
| 19 | 7, 18 | eqtrd 2764 | 1 ⊢ (𝜑 → (1st ‘(𝑂‘𝑈)) = (𝐾 ∘ 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 class class class wbr 5095 ∘ ccom 5627 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 1st c1st 7929 Basecbs 17138 Func cfunc 17779 ∘F cfuco 49302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-ixp 8832 df-func 17783 df-cofu 17785 df-fuco 49303 |
| This theorem is referenced by: fuco111x 49317 fuco11id 49320 fucocolem4 49342 |
| Copyright terms: Public domain | W3C validator |