![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco111 | Structured version Visualization version GIF version |
Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the object part of the composed functor. (Contributed by Zhi Wang, 2-Oct-2025.) |
Ref | Expression |
---|---|
fuco11.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
fuco11.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
fuco11.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
fuco11.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
Ref | Expression |
---|---|
fuco111 | ⊢ (𝜑 → (1st ‘(𝑂‘𝑈)) = (𝐾 ∘ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fuco11.o | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
2 | fuco11.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
3 | fuco11.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
4 | fuco11.u | . . . 4 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
5 | eqid 2737 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
6 | 1, 2, 3, 4, 5 | fuco11a 48897 | . . 3 ⊢ (𝜑 → (𝑂‘𝑈) = 〈(𝐾 ∘ 𝐹), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) |
7 | 6 | fveq2d 6918 | . 2 ⊢ (𝜑 → (1st ‘(𝑂‘𝑈)) = (1st ‘〈(𝐾 ∘ 𝐹), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉)) |
8 | relfunc 17922 | . . . . . 6 ⊢ Rel (𝐷 Func 𝐸) | |
9 | 8 | brrelex1i 5749 | . . . . 5 ⊢ (𝐾(𝐷 Func 𝐸)𝐿 → 𝐾 ∈ V) |
10 | 3, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ V) |
11 | relfunc 17922 | . . . . . 6 ⊢ Rel (𝐶 Func 𝐷) | |
12 | 11 | brrelex1i 5749 | . . . . 5 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐹 ∈ V) |
13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
14 | 10, 13 | coexd 7961 | . . 3 ⊢ (𝜑 → (𝐾 ∘ 𝐹) ∈ V) |
15 | fvex 6927 | . . . 4 ⊢ (Base‘𝐶) ∈ V | |
16 | 15, 15 | mpoex 8112 | . . 3 ⊢ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) ∈ V |
17 | op1stg 8034 | . . 3 ⊢ (((𝐾 ∘ 𝐹) ∈ V ∧ (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) ∈ V) → (1st ‘〈(𝐾 ∘ 𝐹), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) = (𝐾 ∘ 𝐹)) | |
18 | 14, 16, 17 | sylancl 586 | . 2 ⊢ (𝜑 → (1st ‘〈(𝐾 ∘ 𝐹), (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) = (𝐾 ∘ 𝐹)) |
19 | 7, 18 | eqtrd 2777 | 1 ⊢ (𝜑 → (1st ‘(𝑂‘𝑈)) = (𝐾 ∘ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 〈cop 4640 class class class wbr 5151 ∘ ccom 5697 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 1st c1st 8020 Basecbs 17254 Func cfunc 17914 ∘F cfuco 48885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 df-map 8876 df-ixp 8946 df-func 17918 df-cofu 17920 df-fuco 48886 |
This theorem is referenced by: fuco111x 48900 fuco11id 48903 fucocolem4 48923 |
Copyright terms: Public domain | W3C validator |