Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco11a Structured version   Visualization version   GIF version

Theorem fuco11a 49359
Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco11.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco11.f (𝜑𝐹(𝐶 Func 𝐷)𝐺)
fuco11.k (𝜑𝐾(𝐷 Func 𝐸)𝐿)
fuco11.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco11a.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
fuco11a (𝜑 → (𝑂𝑈) = ⟨(𝐾𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem fuco11a
StepHypRef Expression
1 fuco11.o . . 3 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fuco11.f . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
3 fuco11.k . . 3 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
4 fuco11.u . . 3 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
51, 2, 3, 4fuco11 49357 . 2 (𝜑 → (𝑂𝑈) = (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩))
6 fuco11a.b . . 3 𝐵 = (Base‘𝐶)
76, 2, 3cofuval2 17791 . 2 (𝜑 → (⟨𝐾, 𝐿⟩ ∘func𝐹, 𝐺⟩) = ⟨(𝐾𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
85, 7eqtrd 2766 1 (𝜑 → (𝑂𝑈) = ⟨(𝐾𝐹), (𝑥𝐵, 𝑦𝐵 ↦ (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cop 4582   class class class wbr 5091  ccom 5620  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17117   Func cfunc 17758  func ccofu 17760  F cfuco 49347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-ixp 8822  df-func 17762  df-cofu 17764  df-fuco 49348
This theorem is referenced by:  fuco112  49360  fuco111  49361  fuco22natlem  49376
  Copyright terms: Public domain W3C validator