Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22natlem Structured version   Visualization version   GIF version

Theorem fuco22natlem 48912
Description: The composed natural transformation is a natural transformation. Use fuco22nat 48913 instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco22natlem.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22natlem.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22natlem.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco22natlem.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22natlem.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
Assertion
Ref Expression
fuco22natlem (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))

Proof of Theorem fuco22natlem
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
2 eqid 2737 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2737 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2737 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2737 . . 3 (comp‘𝐸) = (comp‘𝐸)
6 fuco22natlem.o . . . . . 6 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7 eqid 2737 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
8 fuco22natlem.a . . . . . . 7 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
97, 8natrcl2 48870 . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 eqid 2737 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
11 fuco22natlem.b . . . . . . 7 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
1210, 11natrcl2 48870 . . . . . 6 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
13 fuco22natlem.u . . . . . 6 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
146, 9, 12, 13, 2fuco11a 48897 . . . . 5 (𝜑 → (𝑂𝑈) = ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩)
156, 9, 12, 13fuco11cl 48896 . . . . 5 (𝜑 → (𝑂𝑈) ∈ (𝐶 Func 𝐸))
1614, 15eqeltrrd 2842 . . . 4 (𝜑 → ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩ ∈ (𝐶 Func 𝐸))
17 df-br 5152 . . . 4 ((𝐾𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))) ↔ ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩ ∈ (𝐶 Func 𝐸))
1816, 17sylibr 234 . . 3 (𝜑 → (𝐾𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))))
197, 8natrcl3 48871 . . . . . 6 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
2010, 11natrcl3 48871 . . . . . 6 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
21 fuco22natlem.v . . . . . 6 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
226, 19, 20, 21, 2fuco11a 48897 . . . . 5 (𝜑 → (𝑂𝑉) = ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩)
236, 19, 20, 21fuco11cl 48896 . . . . 5 (𝜑 → (𝑂𝑉) ∈ (𝐶 Func 𝐸))
2422, 23eqeltrrd 2842 . . . 4 (𝜑 → ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩ ∈ (𝐶 Func 𝐸))
25 df-br 5152 . . . 4 ((𝑅𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))) ↔ ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩ ∈ (𝐶 Func 𝐸))
2624, 25sylibr 234 . . 3 (𝜑 → (𝑅𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))))
276, 13, 21, 8, 11fucofn22 48907 . . 3 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶))
28 eqid 2737 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
2912adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿)
3029funcrcl3 48838 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
31 eqid 2737 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3231, 28, 29funcf1 17926 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸))
339adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺)
342, 31, 33funcf1 17926 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
35 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
3634, 35ffvelcdmd 7112 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐹𝑥) ∈ (Base‘𝐷))
3732, 36ffvelcdmd 7112 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝐹𝑥)) ∈ (Base‘𝐸))
3819adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑀(𝐶 Func 𝐷)𝑁)
392, 31, 38funcf1 17926 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑀:(Base‘𝐶)⟶(Base‘𝐷))
4039, 35ffvelcdmd 7112 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑀𝑥) ∈ (Base‘𝐷))
4132, 40ffvelcdmd 7112 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝑀𝑥)) ∈ (Base‘𝐸))
4220adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅(𝐷 Func 𝐸)𝑆)
4331, 28, 42funcf1 17926 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅:(Base‘𝐷)⟶(Base‘𝐸))
4443, 40ffvelcdmd 7112 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅‘(𝑀𝑥)) ∈ (Base‘𝐸))
45 eqid 2737 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
4631, 45, 4, 29, 36, 40funcf2 17928 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐹𝑥)𝐿(𝑀𝑥)):((𝐹𝑥)(Hom ‘𝐷)(𝑀𝑥))⟶((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝐾‘(𝑀𝑥))))
478adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
487, 47, 2, 45, 35natcl 18017 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐴𝑥) ∈ ((𝐹𝑥)(Hom ‘𝐷)(𝑀𝑥)))
4946, 48ffvelcdmd 7112 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)) ∈ ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝐾‘(𝑀𝑥))))
5011adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
512, 31, 19funcf1 17926 . . . . . . 7 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
5251ffvelcdmda 7111 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑀𝑥) ∈ (Base‘𝐷))
5310, 50, 31, 4, 52natcl 18017 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐵‘(𝑀𝑥)) ∈ ((𝐾‘(𝑀𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
5428, 4, 5, 30, 37, 41, 44, 49, 53catcocl 17739 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))) ∈ ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
556adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
5613adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5721adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
58 eqidd 2738 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))))
5955, 56, 57, 47, 50, 35, 58fuco23 48908 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) = ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))))
6034, 35fvco3d 7016 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
6139, 35fvco3d 7016 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅𝑀)‘𝑥) = (𝑅‘(𝑀𝑥)))
6260, 61oveq12d 7456 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝐾𝐹)‘𝑥)(Hom ‘𝐸)((𝑅𝑀)‘𝑥)) = ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
6354, 59, 623eltr4d 2856 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) ∈ (((𝐾𝐹)‘𝑥)(Hom ‘𝐸)((𝑅𝑀)‘𝑥)))
64 simplrl 777 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
65 simplrr 778 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
668ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
67 simpr 484 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ∈ (𝑥(Hom ‘𝐶)𝑦))
6811ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
696ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7013ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
7121ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
7264, 65, 66, 67, 68, 69, 70, 71fuco22natlem3 48911 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘)) = (((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
73 fveq2 6914 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
7473oveq1d 7453 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝐹𝑧)𝐿(𝐹𝑤)) = ((𝐹𝑥)𝐿(𝐹𝑤)))
75 oveq1 7445 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝐺𝑤) = (𝑥𝐺𝑤))
7674, 75coeq12d 5882 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)) = (((𝐹𝑥)𝐿(𝐹𝑤)) ∘ (𝑥𝐺𝑤)))
77 fveq2 6914 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
7877oveq2d 7454 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑥)𝐿(𝐹𝑤)) = ((𝐹𝑥)𝐿(𝐹𝑦)))
79 oveq2 7446 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝐺𝑤) = (𝑥𝐺𝑦))
8078, 79coeq12d 5882 . . . . . . . 8 (𝑤 = 𝑦 → (((𝐹𝑥)𝐿(𝐹𝑤)) ∘ (𝑥𝐺𝑤)) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
81 eqid 2737 . . . . . . . 8 (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))
82 ovex 7471 . . . . . . . . 9 ((𝐹𝑥)𝐿(𝐹𝑦)) ∈ V
83 ovex 7471 . . . . . . . . 9 (𝑥𝐺𝑦) ∈ V
8482, 83coex 7960 . . . . . . . 8 (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)) ∈ V
8576, 80, 81, 84ovmpo 7600 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
8685ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
8786fveq1d 6916 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘) = ((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘))
8887oveq2d 7454 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘)) = (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘)))
89 fveq2 6914 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑀𝑧) = (𝑀𝑥))
9089oveq1d 7453 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑀𝑧)𝑆(𝑀𝑤)) = ((𝑀𝑥)𝑆(𝑀𝑤)))
91 oveq1 7445 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑁𝑤) = (𝑥𝑁𝑤))
9290, 91coeq12d 5882 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)) = (((𝑀𝑥)𝑆(𝑀𝑤)) ∘ (𝑥𝑁𝑤)))
93 fveq2 6914 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑀𝑤) = (𝑀𝑦))
9493oveq2d 7454 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑀𝑥)𝑆(𝑀𝑤)) = ((𝑀𝑥)𝑆(𝑀𝑦)))
95 oveq2 7446 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝑁𝑤) = (𝑥𝑁𝑦))
9694, 95coeq12d 5882 . . . . . . . 8 (𝑤 = 𝑦 → (((𝑀𝑥)𝑆(𝑀𝑤)) ∘ (𝑥𝑁𝑤)) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
97 eqid 2737 . . . . . . . 8 (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))
98 ovex 7471 . . . . . . . . 9 ((𝑀𝑥)𝑆(𝑀𝑦)) ∈ V
99 ovex 7471 . . . . . . . . 9 (𝑥𝑁𝑦) ∈ V
10098, 99coex 7960 . . . . . . . 8 (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)) ∈ V
10192, 96, 97, 100ovmpo 7600 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
102101ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
103102fveq1d 6916 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘) = ((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘))
104103oveq1d 7453 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)) = (((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
10572, 88, 1043eqtr4d 2787 . . 3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘)) = (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
1061, 2, 3, 4, 5, 18, 26, 27, 63, 105isnatd 48869 . 2 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ (⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩(𝐶 Nat 𝐸)⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩))
10714, 22oveq12d 7456 . 2 (𝜑 → ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)) = (⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩(𝐶 Nat 𝐸)⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩))
108106, 107eleqtrrd 2844 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4640   class class class wbr 5151  ccom 5697  cfv 6569  (class class class)co 7438  cmpo 7440  Basecbs 17254  Hom chom 17318  compcco 17319   Func cfunc 17914   Nat cnat 18005  F cfuco 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-map 8876  df-ixp 8946  df-cat 17722  df-cid 17723  df-func 17918  df-cofu 17920  df-nat 18007  df-fuco 48886
This theorem is referenced by:  fuco22nat  48913
  Copyright terms: Public domain W3C validator