Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22natlem Structured version   Visualization version   GIF version

Theorem fuco22natlem 49334
Description: The composed natural transformation is a natural transformation. Use fuco22nat 49335 instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco22natlem.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22natlem.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22natlem.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco22natlem.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22natlem.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
Assertion
Ref Expression
fuco22natlem (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))

Proof of Theorem fuco22natlem
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
2 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2729 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2729 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2729 . . 3 (comp‘𝐸) = (comp‘𝐸)
6 fuco22natlem.o . . . . . 6 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7 eqid 2729 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
8 fuco22natlem.a . . . . . . 7 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
97, 8natrcl2 49213 . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 eqid 2729 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
11 fuco22natlem.b . . . . . . 7 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
1210, 11natrcl2 49213 . . . . . 6 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
13 fuco22natlem.u . . . . . 6 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
146, 9, 12, 13, 2fuco11a 49317 . . . . 5 (𝜑 → (𝑂𝑈) = ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩)
156, 9, 12, 13fuco11cl 49316 . . . . 5 (𝜑 → (𝑂𝑈) ∈ (𝐶 Func 𝐸))
1614, 15eqeltrrd 2829 . . . 4 (𝜑 → ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩ ∈ (𝐶 Func 𝐸))
17 df-br 5108 . . . 4 ((𝐾𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))) ↔ ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩ ∈ (𝐶 Func 𝐸))
1816, 17sylibr 234 . . 3 (𝜑 → (𝐾𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))))
197, 8natrcl3 49214 . . . . . 6 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
2010, 11natrcl3 49214 . . . . . 6 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
21 fuco22natlem.v . . . . . 6 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
226, 19, 20, 21, 2fuco11a 49317 . . . . 5 (𝜑 → (𝑂𝑉) = ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩)
236, 19, 20, 21fuco11cl 49316 . . . . 5 (𝜑 → (𝑂𝑉) ∈ (𝐶 Func 𝐸))
2422, 23eqeltrrd 2829 . . . 4 (𝜑 → ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩ ∈ (𝐶 Func 𝐸))
25 df-br 5108 . . . 4 ((𝑅𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))) ↔ ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩ ∈ (𝐶 Func 𝐸))
2624, 25sylibr 234 . . 3 (𝜑 → (𝑅𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))))
276, 13, 21, 8, 11fucofn22 49329 . . 3 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶))
28 eqid 2729 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
2912adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿)
3029funcrcl3 49069 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
31 eqid 2729 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3231, 28, 29funcf1 17828 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸))
339adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺)
342, 31, 33funcf1 17828 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
35 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
3634, 35ffvelcdmd 7057 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐹𝑥) ∈ (Base‘𝐷))
3732, 36ffvelcdmd 7057 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝐹𝑥)) ∈ (Base‘𝐸))
3819adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑀(𝐶 Func 𝐷)𝑁)
392, 31, 38funcf1 17828 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑀:(Base‘𝐶)⟶(Base‘𝐷))
4039, 35ffvelcdmd 7057 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑀𝑥) ∈ (Base‘𝐷))
4132, 40ffvelcdmd 7057 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝑀𝑥)) ∈ (Base‘𝐸))
4220adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅(𝐷 Func 𝐸)𝑆)
4331, 28, 42funcf1 17828 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅:(Base‘𝐷)⟶(Base‘𝐸))
4443, 40ffvelcdmd 7057 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅‘(𝑀𝑥)) ∈ (Base‘𝐸))
45 eqid 2729 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
4631, 45, 4, 29, 36, 40funcf2 17830 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐹𝑥)𝐿(𝑀𝑥)):((𝐹𝑥)(Hom ‘𝐷)(𝑀𝑥))⟶((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝐾‘(𝑀𝑥))))
478adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
487, 47, 2, 45, 35natcl 17918 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐴𝑥) ∈ ((𝐹𝑥)(Hom ‘𝐷)(𝑀𝑥)))
4946, 48ffvelcdmd 7057 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)) ∈ ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝐾‘(𝑀𝑥))))
5011adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
512, 31, 19funcf1 17828 . . . . . . 7 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
5251ffvelcdmda 7056 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑀𝑥) ∈ (Base‘𝐷))
5310, 50, 31, 4, 52natcl 17918 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐵‘(𝑀𝑥)) ∈ ((𝐾‘(𝑀𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
5428, 4, 5, 30, 37, 41, 44, 49, 53catcocl 17646 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))) ∈ ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
556adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
5613adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5721adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
58 eqidd 2730 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))))
5955, 56, 57, 47, 50, 35, 58fuco23 49330 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) = ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))))
6034, 35fvco3d 6961 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
6139, 35fvco3d 6961 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅𝑀)‘𝑥) = (𝑅‘(𝑀𝑥)))
6260, 61oveq12d 7405 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝐾𝐹)‘𝑥)(Hom ‘𝐸)((𝑅𝑀)‘𝑥)) = ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
6354, 59, 623eltr4d 2843 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) ∈ (((𝐾𝐹)‘𝑥)(Hom ‘𝐸)((𝑅𝑀)‘𝑥)))
64 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
65 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
668ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
67 simpr 484 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ∈ (𝑥(Hom ‘𝐶)𝑦))
6811ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
696ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7013ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
7121ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
7264, 65, 66, 67, 68, 69, 70, 71fuco22natlem3 49333 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘)) = (((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
73 fveq2 6858 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
7473oveq1d 7402 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝐹𝑧)𝐿(𝐹𝑤)) = ((𝐹𝑥)𝐿(𝐹𝑤)))
75 oveq1 7394 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝐺𝑤) = (𝑥𝐺𝑤))
7674, 75coeq12d 5828 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)) = (((𝐹𝑥)𝐿(𝐹𝑤)) ∘ (𝑥𝐺𝑤)))
77 fveq2 6858 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
7877oveq2d 7403 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑥)𝐿(𝐹𝑤)) = ((𝐹𝑥)𝐿(𝐹𝑦)))
79 oveq2 7395 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝐺𝑤) = (𝑥𝐺𝑦))
8078, 79coeq12d 5828 . . . . . . . 8 (𝑤 = 𝑦 → (((𝐹𝑥)𝐿(𝐹𝑤)) ∘ (𝑥𝐺𝑤)) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
81 eqid 2729 . . . . . . . 8 (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))
82 ovex 7420 . . . . . . . . 9 ((𝐹𝑥)𝐿(𝐹𝑦)) ∈ V
83 ovex 7420 . . . . . . . . 9 (𝑥𝐺𝑦) ∈ V
8482, 83coex 7906 . . . . . . . 8 (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)) ∈ V
8576, 80, 81, 84ovmpo 7549 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
8685ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
8786fveq1d 6860 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘) = ((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘))
8887oveq2d 7403 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘)) = (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘)))
89 fveq2 6858 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑀𝑧) = (𝑀𝑥))
9089oveq1d 7402 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑀𝑧)𝑆(𝑀𝑤)) = ((𝑀𝑥)𝑆(𝑀𝑤)))
91 oveq1 7394 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑁𝑤) = (𝑥𝑁𝑤))
9290, 91coeq12d 5828 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)) = (((𝑀𝑥)𝑆(𝑀𝑤)) ∘ (𝑥𝑁𝑤)))
93 fveq2 6858 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑀𝑤) = (𝑀𝑦))
9493oveq2d 7403 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑀𝑥)𝑆(𝑀𝑤)) = ((𝑀𝑥)𝑆(𝑀𝑦)))
95 oveq2 7395 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝑁𝑤) = (𝑥𝑁𝑦))
9694, 95coeq12d 5828 . . . . . . . 8 (𝑤 = 𝑦 → (((𝑀𝑥)𝑆(𝑀𝑤)) ∘ (𝑥𝑁𝑤)) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
97 eqid 2729 . . . . . . . 8 (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))
98 ovex 7420 . . . . . . . . 9 ((𝑀𝑥)𝑆(𝑀𝑦)) ∈ V
99 ovex 7420 . . . . . . . . 9 (𝑥𝑁𝑦) ∈ V
10098, 99coex 7906 . . . . . . . 8 (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)) ∈ V
10192, 96, 97, 100ovmpo 7549 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
102101ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
103102fveq1d 6860 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘) = ((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘))
104103oveq1d 7402 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)) = (((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
10572, 88, 1043eqtr4d 2774 . . 3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘)) = (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
1061, 2, 3, 4, 5, 18, 26, 27, 63, 105isnatd 49212 . 2 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ (⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩(𝐶 Nat 𝐸)⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩))
10714, 22oveq12d 7405 . 2 (𝜑 → ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)) = (⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩(𝐶 Nat 𝐸)⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩))
108106, 107eleqtrrd 2831 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  Basecbs 17179  Hom chom 17231  compcco 17232   Func cfunc 17816   Nat cnat 17906  F cfuco 49305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-func 17820  df-cofu 17822  df-nat 17908  df-fuco 49306
This theorem is referenced by:  fuco22nat  49335
  Copyright terms: Public domain W3C validator