| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2734 |
. . 3
⊢ (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸) |
| 2 | | eqid 2734 |
. . 3
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 3 | | eqid 2734 |
. . 3
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 4 | | eqid 2734 |
. . 3
⊢ (Hom
‘𝐸) = (Hom
‘𝐸) |
| 5 | | eqid 2734 |
. . 3
⊢
(comp‘𝐸) =
(comp‘𝐸) |
| 6 | | fuco22natlem.o |
. . . . . 6
⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 7 | | eqid 2734 |
. . . . . . 7
⊢ (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷) |
| 8 | | fuco22natlem.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| 9 | 7, 8 | natrcl2 48905 |
. . . . . 6
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 10 | | eqid 2734 |
. . . . . . 7
⊢ (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸) |
| 11 | | fuco22natlem.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| 12 | 10, 11 | natrcl2 48905 |
. . . . . 6
⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| 13 | | fuco22natlem.u |
. . . . . 6
⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 14 | 6, 9, 12, 13, 2 | fuco11a 48983 |
. . . . 5
⊢ (𝜑 → (𝑂‘𝑈) = 〈(𝐾 ∘ 𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))〉) |
| 15 | 6, 9, 12, 13 | fuco11cl 48982 |
. . . . 5
⊢ (𝜑 → (𝑂‘𝑈) ∈ (𝐶 Func 𝐸)) |
| 16 | 14, 15 | eqeltrrd 2834 |
. . . 4
⊢ (𝜑 → 〈(𝐾 ∘ 𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))〉 ∈ (𝐶 Func 𝐸)) |
| 17 | | df-br 5126 |
. . . 4
⊢ ((𝐾 ∘ 𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤))) ↔ 〈(𝐾 ∘ 𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))〉 ∈ (𝐶 Func 𝐸)) |
| 18 | 16, 17 | sylibr 234 |
. . 3
⊢ (𝜑 → (𝐾 ∘ 𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))) |
| 19 | 7, 8 | natrcl3 48906 |
. . . . . 6
⊢ (𝜑 → 𝑀(𝐶 Func 𝐷)𝑁) |
| 20 | 10, 11 | natrcl3 48906 |
. . . . . 6
⊢ (𝜑 → 𝑅(𝐷 Func 𝐸)𝑆) |
| 21 | | fuco22natlem.v |
. . . . . 6
⊢ (𝜑 → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| 22 | 6, 19, 20, 21, 2 | fuco11a 48983 |
. . . . 5
⊢ (𝜑 → (𝑂‘𝑉) = 〈(𝑅 ∘ 𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))〉) |
| 23 | 6, 19, 20, 21 | fuco11cl 48982 |
. . . . 5
⊢ (𝜑 → (𝑂‘𝑉) ∈ (𝐶 Func 𝐸)) |
| 24 | 22, 23 | eqeltrrd 2834 |
. . . 4
⊢ (𝜑 → 〈(𝑅 ∘ 𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))〉 ∈ (𝐶 Func 𝐸)) |
| 25 | | df-br 5126 |
. . . 4
⊢ ((𝑅 ∘ 𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤))) ↔ 〈(𝑅 ∘ 𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))〉 ∈ (𝐶 Func 𝐸)) |
| 26 | 24, 25 | sylibr 234 |
. . 3
⊢ (𝜑 → (𝑅 ∘ 𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))) |
| 27 | 6, 13, 21, 8, 11 | fucofn22 48995 |
. . 3
⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶)) |
| 28 | | eqid 2734 |
. . . . 5
⊢
(Base‘𝐸) =
(Base‘𝐸) |
| 29 | 12 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿) |
| 30 | 29 | funcrcl3 48866 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat) |
| 31 | | eqid 2734 |
. . . . . . 7
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 32 | 31, 28, 29 | funcf1 17883 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸)) |
| 33 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺) |
| 34 | 2, 31, 33 | funcf1 17883 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷)) |
| 35 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶)) |
| 36 | 34, 35 | ffvelcdmd 7086 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐹‘𝑥) ∈ (Base‘𝐷)) |
| 37 | 32, 36 | ffvelcdmd 7086 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝐹‘𝑥)) ∈ (Base‘𝐸)) |
| 38 | 19 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑀(𝐶 Func 𝐷)𝑁) |
| 39 | 2, 31, 38 | funcf1 17883 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑀:(Base‘𝐶)⟶(Base‘𝐷)) |
| 40 | 39, 35 | ffvelcdmd 7086 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑀‘𝑥) ∈ (Base‘𝐷)) |
| 41 | 32, 40 | ffvelcdmd 7086 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝑀‘𝑥)) ∈ (Base‘𝐸)) |
| 42 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑅(𝐷 Func 𝐸)𝑆) |
| 43 | 31, 28, 42 | funcf1 17883 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑅:(Base‘𝐷)⟶(Base‘𝐸)) |
| 44 | 43, 40 | ffvelcdmd 7086 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑅‘(𝑀‘𝑥)) ∈ (Base‘𝐸)) |
| 45 | | eqid 2734 |
. . . . . . 7
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 46 | 31, 45, 4, 29, 36, 40 | funcf2 17885 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝐹‘𝑥)𝐿(𝑀‘𝑥)):((𝐹‘𝑥)(Hom ‘𝐷)(𝑀‘𝑥))⟶((𝐾‘(𝐹‘𝑥))(Hom ‘𝐸)(𝐾‘(𝑀‘𝑥)))) |
| 47 | 8 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| 48 | 7, 47, 2, 45, 35 | natcl 17973 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐴‘𝑥) ∈ ((𝐹‘𝑥)(Hom ‘𝐷)(𝑀‘𝑥))) |
| 49 | 46, 48 | ffvelcdmd 7086 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)) ∈ ((𝐾‘(𝐹‘𝑥))(Hom ‘𝐸)(𝐾‘(𝑀‘𝑥)))) |
| 50 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| 51 | 2, 31, 19 | funcf1 17883 |
. . . . . . 7
⊢ (𝜑 → 𝑀:(Base‘𝐶)⟶(Base‘𝐷)) |
| 52 | 51 | ffvelcdmda 7085 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝑀‘𝑥) ∈ (Base‘𝐷)) |
| 53 | 10, 50, 31, 4, 52 | natcl 17973 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (𝐵‘(𝑀‘𝑥)) ∈ ((𝐾‘(𝑀‘𝑥))(Hom ‘𝐸)(𝑅‘(𝑀‘𝑥)))) |
| 54 | 28, 4, 5, 30, 37, 41, 44, 49, 53 | catcocl 17700 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥))) ∈ ((𝐾‘(𝐹‘𝑥))(Hom ‘𝐸)(𝑅‘(𝑀‘𝑥)))) |
| 55 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 56 | 13 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 57 | 21 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| 58 | | eqidd 2735 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥))) = (〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))) |
| 59 | 55, 56, 57, 47, 50, 35, 58 | fuco23 48996 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) = ((𝐵‘(𝑀‘𝑥))(〈(𝐾‘(𝐹‘𝑥)), (𝐾‘(𝑀‘𝑥))〉(comp‘𝐸)(𝑅‘(𝑀‘𝑥)))(((𝐹‘𝑥)𝐿(𝑀‘𝑥))‘(𝐴‘𝑥)))) |
| 60 | 34, 35 | fvco3d 6990 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝐾 ∘ 𝐹)‘𝑥) = (𝐾‘(𝐹‘𝑥))) |
| 61 | 39, 35 | fvco3d 6990 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝑅 ∘ 𝑀)‘𝑥) = (𝑅‘(𝑀‘𝑥))) |
| 62 | 60, 61 | oveq12d 7432 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → (((𝐾 ∘ 𝐹)‘𝑥)(Hom ‘𝐸)((𝑅 ∘ 𝑀)‘𝑥)) = ((𝐾‘(𝐹‘𝑥))(Hom ‘𝐸)(𝑅‘(𝑀‘𝑥)))) |
| 63 | 54, 59, 62 | 3eltr4d 2848 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) ∈ (((𝐾 ∘ 𝐹)‘𝑥)(Hom ‘𝐸)((𝑅 ∘ 𝑀)‘𝑥))) |
| 64 | | simplrl 776 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶)) |
| 65 | | simplrr 777 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶)) |
| 66 | 8 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐴 ∈ (〈𝐹, 𝐺〉(𝐶 Nat 𝐷)〈𝑀, 𝑁〉)) |
| 67 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) |
| 68 | 11 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐵 ∈ (〈𝐾, 𝐿〉(𝐷 Nat 𝐸)〈𝑅, 𝑆〉)) |
| 69 | 6 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| 70 | 13 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| 71 | 21 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑉 = 〈〈𝑅, 𝑆〉, 〈𝑀, 𝑁〉〉) |
| 72 | 64, 65, 66, 67, 68, 69, 70, 71 | fuco22natlem3 48999 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(〈((𝐾 ∘ 𝐹)‘𝑥), ((𝐾 ∘ 𝐹)‘𝑦)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑦))((((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))‘ℎ)) = (((((𝑀‘𝑥)𝑆(𝑀‘𝑦)) ∘ (𝑥𝑁𝑦))‘ℎ)(〈((𝐾 ∘ 𝐹)‘𝑥), ((𝑅 ∘ 𝑀)‘𝑥)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥))) |
| 73 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝐹‘𝑧) = (𝐹‘𝑥)) |
| 74 | 73 | oveq1d 7429 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → ((𝐹‘𝑧)𝐿(𝐹‘𝑤)) = ((𝐹‘𝑥)𝐿(𝐹‘𝑤))) |
| 75 | | oveq1 7421 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧𝐺𝑤) = (𝑥𝐺𝑤)) |
| 76 | 74, 75 | coeq12d 5857 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)) = (((𝐹‘𝑥)𝐿(𝐹‘𝑤)) ∘ (𝑥𝐺𝑤))) |
| 77 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝐹‘𝑤) = (𝐹‘𝑦)) |
| 78 | 77 | oveq2d 7430 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝐹‘𝑥)𝐿(𝐹‘𝑤)) = ((𝐹‘𝑥)𝐿(𝐹‘𝑦))) |
| 79 | | oveq2 7422 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑥𝐺𝑤) = (𝑥𝐺𝑦)) |
| 80 | 78, 79 | coeq12d 5857 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (((𝐹‘𝑥)𝐿(𝐹‘𝑤)) ∘ (𝑥𝐺𝑤)) = (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) |
| 81 | | eqid 2734 |
. . . . . . . 8
⊢ (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤))) |
| 82 | | ovex 7447 |
. . . . . . . . 9
⊢ ((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∈ V |
| 83 | | ovex 7447 |
. . . . . . . . 9
⊢ (𝑥𝐺𝑦) ∈ V |
| 84 | 82, 83 | coex 7935 |
. . . . . . . 8
⊢ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)) ∈ V |
| 85 | 76, 80, 81, 84 | ovmpo 7576 |
. . . . . . 7
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) |
| 86 | 85 | ad2antlr 727 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) |
| 87 | 86 | fveq1d 6889 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘ℎ) = ((((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))‘ℎ)) |
| 88 | 87 | oveq2d 7430 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(〈((𝐾 ∘ 𝐹)‘𝑥), ((𝐾 ∘ 𝐹)‘𝑦)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘ℎ)) = (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(〈((𝐾 ∘ 𝐹)‘𝑥), ((𝐾 ∘ 𝐹)‘𝑦)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑦))((((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))‘ℎ))) |
| 89 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑥 → (𝑀‘𝑧) = (𝑀‘𝑥)) |
| 90 | 89 | oveq1d 7429 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → ((𝑀‘𝑧)𝑆(𝑀‘𝑤)) = ((𝑀‘𝑥)𝑆(𝑀‘𝑤))) |
| 91 | | oveq1 7421 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑧𝑁𝑤) = (𝑥𝑁𝑤)) |
| 92 | 90, 91 | coeq12d 5857 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)) = (((𝑀‘𝑥)𝑆(𝑀‘𝑤)) ∘ (𝑥𝑁𝑤))) |
| 93 | | fveq2 6887 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑀‘𝑤) = (𝑀‘𝑦)) |
| 94 | 93 | oveq2d 7430 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ((𝑀‘𝑥)𝑆(𝑀‘𝑤)) = ((𝑀‘𝑥)𝑆(𝑀‘𝑦))) |
| 95 | | oveq2 7422 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → (𝑥𝑁𝑤) = (𝑥𝑁𝑦)) |
| 96 | 94, 95 | coeq12d 5857 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (((𝑀‘𝑥)𝑆(𝑀‘𝑤)) ∘ (𝑥𝑁𝑤)) = (((𝑀‘𝑥)𝑆(𝑀‘𝑦)) ∘ (𝑥𝑁𝑦))) |
| 97 | | eqid 2734 |
. . . . . . . 8
⊢ (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤))) |
| 98 | | ovex 7447 |
. . . . . . . . 9
⊢ ((𝑀‘𝑥)𝑆(𝑀‘𝑦)) ∈ V |
| 99 | | ovex 7447 |
. . . . . . . . 9
⊢ (𝑥𝑁𝑦) ∈ V |
| 100 | 98, 99 | coex 7935 |
. . . . . . . 8
⊢ (((𝑀‘𝑥)𝑆(𝑀‘𝑦)) ∘ (𝑥𝑁𝑦)) ∈ V |
| 101 | 92, 96, 97, 100 | ovmpo 7576 |
. . . . . . 7
⊢ ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀‘𝑥)𝑆(𝑀‘𝑦)) ∘ (𝑥𝑁𝑦))) |
| 102 | 101 | ad2antlr 727 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀‘𝑥)𝑆(𝑀‘𝑦)) ∘ (𝑥𝑁𝑦))) |
| 103 | 102 | fveq1d 6889 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘ℎ) = ((((𝑀‘𝑥)𝑆(𝑀‘𝑦)) ∘ (𝑥𝑁𝑦))‘ℎ)) |
| 104 | 103 | oveq1d 7429 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘ℎ)(〈((𝐾 ∘ 𝐹)‘𝑥), ((𝑅 ∘ 𝑀)‘𝑥)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)) = (((((𝑀‘𝑥)𝑆(𝑀‘𝑦)) ∘ (𝑥𝑁𝑦))‘ℎ)(〈((𝐾 ∘ 𝐹)‘𝑥), ((𝑅 ∘ 𝑀)‘𝑥)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥))) |
| 105 | 72, 88, 104 | 3eqtr4d 2779 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ℎ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(〈((𝐾 ∘ 𝐹)‘𝑥), ((𝐾 ∘ 𝐹)‘𝑦)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘ℎ)) = (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘ℎ)(〈((𝐾 ∘ 𝐹)‘𝑥), ((𝑅 ∘ 𝑀)‘𝑥)〉(comp‘𝐸)((𝑅 ∘ 𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥))) |
| 106 | 1, 2, 3, 4, 5, 18,
26, 27, 63, 105 | isnatd 48904 |
. 2
⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ (〈(𝐾 ∘ 𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))〉(𝐶 Nat 𝐸)〈(𝑅 ∘ 𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))〉)) |
| 107 | 14, 22 | oveq12d 7432 |
. 2
⊢ (𝜑 → ((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉)) = (〈(𝐾 ∘ 𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹‘𝑧)𝐿(𝐹‘𝑤)) ∘ (𝑧𝐺𝑤)))〉(𝐶 Nat 𝐸)〈(𝑅 ∘ 𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀‘𝑧)𝑆(𝑀‘𝑤)) ∘ (𝑧𝑁𝑤)))〉)) |
| 108 | 106, 107 | eleqtrrd 2836 |
1
⊢ (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂‘𝑈)(𝐶 Nat 𝐸)(𝑂‘𝑉))) |