Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22natlem Structured version   Visualization version   GIF version

Theorem fuco22natlem 49000
Description: The composed natural transformation is a natural transformation. Use fuco22nat 49001 instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco22natlem.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22natlem.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22natlem.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco22natlem.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22natlem.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
Assertion
Ref Expression
fuco22natlem (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))

Proof of Theorem fuco22natlem
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
2 eqid 2734 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2734 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2734 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2734 . . 3 (comp‘𝐸) = (comp‘𝐸)
6 fuco22natlem.o . . . . . 6 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7 eqid 2734 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
8 fuco22natlem.a . . . . . . 7 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
97, 8natrcl2 48905 . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 eqid 2734 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
11 fuco22natlem.b . . . . . . 7 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
1210, 11natrcl2 48905 . . . . . 6 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
13 fuco22natlem.u . . . . . 6 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
146, 9, 12, 13, 2fuco11a 48983 . . . . 5 (𝜑 → (𝑂𝑈) = ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩)
156, 9, 12, 13fuco11cl 48982 . . . . 5 (𝜑 → (𝑂𝑈) ∈ (𝐶 Func 𝐸))
1614, 15eqeltrrd 2834 . . . 4 (𝜑 → ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩ ∈ (𝐶 Func 𝐸))
17 df-br 5126 . . . 4 ((𝐾𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))) ↔ ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩ ∈ (𝐶 Func 𝐸))
1816, 17sylibr 234 . . 3 (𝜑 → (𝐾𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))))
197, 8natrcl3 48906 . . . . . 6 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
2010, 11natrcl3 48906 . . . . . 6 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
21 fuco22natlem.v . . . . . 6 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
226, 19, 20, 21, 2fuco11a 48983 . . . . 5 (𝜑 → (𝑂𝑉) = ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩)
236, 19, 20, 21fuco11cl 48982 . . . . 5 (𝜑 → (𝑂𝑉) ∈ (𝐶 Func 𝐸))
2422, 23eqeltrrd 2834 . . . 4 (𝜑 → ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩ ∈ (𝐶 Func 𝐸))
25 df-br 5126 . . . 4 ((𝑅𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))) ↔ ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩ ∈ (𝐶 Func 𝐸))
2624, 25sylibr 234 . . 3 (𝜑 → (𝑅𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))))
276, 13, 21, 8, 11fucofn22 48995 . . 3 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶))
28 eqid 2734 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
2912adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿)
3029funcrcl3 48866 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
31 eqid 2734 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3231, 28, 29funcf1 17883 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸))
339adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺)
342, 31, 33funcf1 17883 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
35 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
3634, 35ffvelcdmd 7086 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐹𝑥) ∈ (Base‘𝐷))
3732, 36ffvelcdmd 7086 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝐹𝑥)) ∈ (Base‘𝐸))
3819adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑀(𝐶 Func 𝐷)𝑁)
392, 31, 38funcf1 17883 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑀:(Base‘𝐶)⟶(Base‘𝐷))
4039, 35ffvelcdmd 7086 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑀𝑥) ∈ (Base‘𝐷))
4132, 40ffvelcdmd 7086 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝑀𝑥)) ∈ (Base‘𝐸))
4220adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅(𝐷 Func 𝐸)𝑆)
4331, 28, 42funcf1 17883 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅:(Base‘𝐷)⟶(Base‘𝐸))
4443, 40ffvelcdmd 7086 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅‘(𝑀𝑥)) ∈ (Base‘𝐸))
45 eqid 2734 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
4631, 45, 4, 29, 36, 40funcf2 17885 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐹𝑥)𝐿(𝑀𝑥)):((𝐹𝑥)(Hom ‘𝐷)(𝑀𝑥))⟶((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝐾‘(𝑀𝑥))))
478adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
487, 47, 2, 45, 35natcl 17973 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐴𝑥) ∈ ((𝐹𝑥)(Hom ‘𝐷)(𝑀𝑥)))
4946, 48ffvelcdmd 7086 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)) ∈ ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝐾‘(𝑀𝑥))))
5011adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
512, 31, 19funcf1 17883 . . . . . . 7 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
5251ffvelcdmda 7085 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑀𝑥) ∈ (Base‘𝐷))
5310, 50, 31, 4, 52natcl 17973 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐵‘(𝑀𝑥)) ∈ ((𝐾‘(𝑀𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
5428, 4, 5, 30, 37, 41, 44, 49, 53catcocl 17700 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))) ∈ ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
556adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
5613adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5721adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
58 eqidd 2735 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))))
5955, 56, 57, 47, 50, 35, 58fuco23 48996 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) = ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))))
6034, 35fvco3d 6990 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
6139, 35fvco3d 6990 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅𝑀)‘𝑥) = (𝑅‘(𝑀𝑥)))
6260, 61oveq12d 7432 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝐾𝐹)‘𝑥)(Hom ‘𝐸)((𝑅𝑀)‘𝑥)) = ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
6354, 59, 623eltr4d 2848 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) ∈ (((𝐾𝐹)‘𝑥)(Hom ‘𝐸)((𝑅𝑀)‘𝑥)))
64 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
65 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
668ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
67 simpr 484 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ∈ (𝑥(Hom ‘𝐶)𝑦))
6811ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
696ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7013ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
7121ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
7264, 65, 66, 67, 68, 69, 70, 71fuco22natlem3 48999 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘)) = (((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
73 fveq2 6887 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
7473oveq1d 7429 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝐹𝑧)𝐿(𝐹𝑤)) = ((𝐹𝑥)𝐿(𝐹𝑤)))
75 oveq1 7421 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝐺𝑤) = (𝑥𝐺𝑤))
7674, 75coeq12d 5857 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)) = (((𝐹𝑥)𝐿(𝐹𝑤)) ∘ (𝑥𝐺𝑤)))
77 fveq2 6887 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
7877oveq2d 7430 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑥)𝐿(𝐹𝑤)) = ((𝐹𝑥)𝐿(𝐹𝑦)))
79 oveq2 7422 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝐺𝑤) = (𝑥𝐺𝑦))
8078, 79coeq12d 5857 . . . . . . . 8 (𝑤 = 𝑦 → (((𝐹𝑥)𝐿(𝐹𝑤)) ∘ (𝑥𝐺𝑤)) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
81 eqid 2734 . . . . . . . 8 (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))
82 ovex 7447 . . . . . . . . 9 ((𝐹𝑥)𝐿(𝐹𝑦)) ∈ V
83 ovex 7447 . . . . . . . . 9 (𝑥𝐺𝑦) ∈ V
8482, 83coex 7935 . . . . . . . 8 (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)) ∈ V
8576, 80, 81, 84ovmpo 7576 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
8685ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
8786fveq1d 6889 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘) = ((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘))
8887oveq2d 7430 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘)) = (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘)))
89 fveq2 6887 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑀𝑧) = (𝑀𝑥))
9089oveq1d 7429 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑀𝑧)𝑆(𝑀𝑤)) = ((𝑀𝑥)𝑆(𝑀𝑤)))
91 oveq1 7421 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑁𝑤) = (𝑥𝑁𝑤))
9290, 91coeq12d 5857 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)) = (((𝑀𝑥)𝑆(𝑀𝑤)) ∘ (𝑥𝑁𝑤)))
93 fveq2 6887 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑀𝑤) = (𝑀𝑦))
9493oveq2d 7430 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑀𝑥)𝑆(𝑀𝑤)) = ((𝑀𝑥)𝑆(𝑀𝑦)))
95 oveq2 7422 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝑁𝑤) = (𝑥𝑁𝑦))
9694, 95coeq12d 5857 . . . . . . . 8 (𝑤 = 𝑦 → (((𝑀𝑥)𝑆(𝑀𝑤)) ∘ (𝑥𝑁𝑤)) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
97 eqid 2734 . . . . . . . 8 (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))
98 ovex 7447 . . . . . . . . 9 ((𝑀𝑥)𝑆(𝑀𝑦)) ∈ V
99 ovex 7447 . . . . . . . . 9 (𝑥𝑁𝑦) ∈ V
10098, 99coex 7935 . . . . . . . 8 (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)) ∈ V
10192, 96, 97, 100ovmpo 7576 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
102101ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
103102fveq1d 6889 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘) = ((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘))
104103oveq1d 7429 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)) = (((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
10572, 88, 1043eqtr4d 2779 . . 3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘)) = (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
1061, 2, 3, 4, 5, 18, 26, 27, 63, 105isnatd 48904 . 2 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ (⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩(𝐶 Nat 𝐸)⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩))
10714, 22oveq12d 7432 . 2 (𝜑 → ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)) = (⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩(𝐶 Nat 𝐸)⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩))
108106, 107eleqtrrd 2836 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cop 4614   class class class wbr 5125  ccom 5671  cfv 6542  (class class class)co 7414  cmpo 7416  Basecbs 17230  Hom chom 17285  compcco 17286   Func cfunc 17871   Nat cnat 17961  F cfuco 48971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-map 8851  df-ixp 8921  df-cat 17683  df-cid 17684  df-func 17875  df-cofu 17877  df-nat 17963  df-fuco 48972
This theorem is referenced by:  fuco22nat  49001
  Copyright terms: Public domain W3C validator