Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22natlem Structured version   Visualization version   GIF version

Theorem fuco22natlem 49318
Description: The composed natural transformation is a natural transformation. Use fuco22nat 49319 instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco22natlem.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22natlem.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22natlem.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco22natlem.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22natlem.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
Assertion
Ref Expression
fuco22natlem (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))

Proof of Theorem fuco22natlem
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
2 eqid 2729 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2729 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2729 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2729 . . 3 (comp‘𝐸) = (comp‘𝐸)
6 fuco22natlem.o . . . . . 6 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7 eqid 2729 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
8 fuco22natlem.a . . . . . . 7 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
97, 8natrcl2 49197 . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 eqid 2729 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
11 fuco22natlem.b . . . . . . 7 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
1210, 11natrcl2 49197 . . . . . 6 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
13 fuco22natlem.u . . . . . 6 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
146, 9, 12, 13, 2fuco11a 49301 . . . . 5 (𝜑 → (𝑂𝑈) = ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩)
156, 9, 12, 13fuco11cl 49300 . . . . 5 (𝜑 → (𝑂𝑈) ∈ (𝐶 Func 𝐸))
1614, 15eqeltrrd 2829 . . . 4 (𝜑 → ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩ ∈ (𝐶 Func 𝐸))
17 df-br 5096 . . . 4 ((𝐾𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))) ↔ ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩ ∈ (𝐶 Func 𝐸))
1816, 17sylibr 234 . . 3 (𝜑 → (𝐾𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))))
197, 8natrcl3 49198 . . . . . 6 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
2010, 11natrcl3 49198 . . . . . 6 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
21 fuco22natlem.v . . . . . 6 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
226, 19, 20, 21, 2fuco11a 49301 . . . . 5 (𝜑 → (𝑂𝑉) = ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩)
236, 19, 20, 21fuco11cl 49300 . . . . 5 (𝜑 → (𝑂𝑉) ∈ (𝐶 Func 𝐸))
2422, 23eqeltrrd 2829 . . . 4 (𝜑 → ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩ ∈ (𝐶 Func 𝐸))
25 df-br 5096 . . . 4 ((𝑅𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))) ↔ ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩ ∈ (𝐶 Func 𝐸))
2624, 25sylibr 234 . . 3 (𝜑 → (𝑅𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))))
276, 13, 21, 8, 11fucofn22 49313 . . 3 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶))
28 eqid 2729 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
2912adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿)
3029funcrcl3 49053 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
31 eqid 2729 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3231, 28, 29funcf1 17791 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸))
339adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺)
342, 31, 33funcf1 17791 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
35 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
3634, 35ffvelcdmd 7023 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐹𝑥) ∈ (Base‘𝐷))
3732, 36ffvelcdmd 7023 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝐹𝑥)) ∈ (Base‘𝐸))
3819adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑀(𝐶 Func 𝐷)𝑁)
392, 31, 38funcf1 17791 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑀:(Base‘𝐶)⟶(Base‘𝐷))
4039, 35ffvelcdmd 7023 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑀𝑥) ∈ (Base‘𝐷))
4132, 40ffvelcdmd 7023 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝑀𝑥)) ∈ (Base‘𝐸))
4220adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅(𝐷 Func 𝐸)𝑆)
4331, 28, 42funcf1 17791 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅:(Base‘𝐷)⟶(Base‘𝐸))
4443, 40ffvelcdmd 7023 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅‘(𝑀𝑥)) ∈ (Base‘𝐸))
45 eqid 2729 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
4631, 45, 4, 29, 36, 40funcf2 17793 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐹𝑥)𝐿(𝑀𝑥)):((𝐹𝑥)(Hom ‘𝐷)(𝑀𝑥))⟶((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝐾‘(𝑀𝑥))))
478adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
487, 47, 2, 45, 35natcl 17881 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐴𝑥) ∈ ((𝐹𝑥)(Hom ‘𝐷)(𝑀𝑥)))
4946, 48ffvelcdmd 7023 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)) ∈ ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝐾‘(𝑀𝑥))))
5011adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
512, 31, 19funcf1 17791 . . . . . . 7 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
5251ffvelcdmda 7022 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑀𝑥) ∈ (Base‘𝐷))
5310, 50, 31, 4, 52natcl 17881 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐵‘(𝑀𝑥)) ∈ ((𝐾‘(𝑀𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
5428, 4, 5, 30, 37, 41, 44, 49, 53catcocl 17609 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))) ∈ ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
556adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
5613adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5721adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
58 eqidd 2730 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))))
5955, 56, 57, 47, 50, 35, 58fuco23 49314 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) = ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))))
6034, 35fvco3d 6927 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
6139, 35fvco3d 6927 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅𝑀)‘𝑥) = (𝑅‘(𝑀𝑥)))
6260, 61oveq12d 7371 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝐾𝐹)‘𝑥)(Hom ‘𝐸)((𝑅𝑀)‘𝑥)) = ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
6354, 59, 623eltr4d 2843 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) ∈ (((𝐾𝐹)‘𝑥)(Hom ‘𝐸)((𝑅𝑀)‘𝑥)))
64 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
65 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
668ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
67 simpr 484 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ∈ (𝑥(Hom ‘𝐶)𝑦))
6811ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
696ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7013ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
7121ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
7264, 65, 66, 67, 68, 69, 70, 71fuco22natlem3 49317 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘)) = (((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
73 fveq2 6826 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
7473oveq1d 7368 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝐹𝑧)𝐿(𝐹𝑤)) = ((𝐹𝑥)𝐿(𝐹𝑤)))
75 oveq1 7360 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝐺𝑤) = (𝑥𝐺𝑤))
7674, 75coeq12d 5811 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)) = (((𝐹𝑥)𝐿(𝐹𝑤)) ∘ (𝑥𝐺𝑤)))
77 fveq2 6826 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
7877oveq2d 7369 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑥)𝐿(𝐹𝑤)) = ((𝐹𝑥)𝐿(𝐹𝑦)))
79 oveq2 7361 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝐺𝑤) = (𝑥𝐺𝑦))
8078, 79coeq12d 5811 . . . . . . . 8 (𝑤 = 𝑦 → (((𝐹𝑥)𝐿(𝐹𝑤)) ∘ (𝑥𝐺𝑤)) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
81 eqid 2729 . . . . . . . 8 (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))
82 ovex 7386 . . . . . . . . 9 ((𝐹𝑥)𝐿(𝐹𝑦)) ∈ V
83 ovex 7386 . . . . . . . . 9 (𝑥𝐺𝑦) ∈ V
8482, 83coex 7870 . . . . . . . 8 (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)) ∈ V
8576, 80, 81, 84ovmpo 7513 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
8685ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
8786fveq1d 6828 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘) = ((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘))
8887oveq2d 7369 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘)) = (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘)))
89 fveq2 6826 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑀𝑧) = (𝑀𝑥))
9089oveq1d 7368 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑀𝑧)𝑆(𝑀𝑤)) = ((𝑀𝑥)𝑆(𝑀𝑤)))
91 oveq1 7360 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑁𝑤) = (𝑥𝑁𝑤))
9290, 91coeq12d 5811 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)) = (((𝑀𝑥)𝑆(𝑀𝑤)) ∘ (𝑥𝑁𝑤)))
93 fveq2 6826 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑀𝑤) = (𝑀𝑦))
9493oveq2d 7369 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑀𝑥)𝑆(𝑀𝑤)) = ((𝑀𝑥)𝑆(𝑀𝑦)))
95 oveq2 7361 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝑁𝑤) = (𝑥𝑁𝑦))
9694, 95coeq12d 5811 . . . . . . . 8 (𝑤 = 𝑦 → (((𝑀𝑥)𝑆(𝑀𝑤)) ∘ (𝑥𝑁𝑤)) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
97 eqid 2729 . . . . . . . 8 (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))
98 ovex 7386 . . . . . . . . 9 ((𝑀𝑥)𝑆(𝑀𝑦)) ∈ V
99 ovex 7386 . . . . . . . . 9 (𝑥𝑁𝑦) ∈ V
10098, 99coex 7870 . . . . . . . 8 (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)) ∈ V
10192, 96, 97, 100ovmpo 7513 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
102101ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
103102fveq1d 6828 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘) = ((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘))
104103oveq1d 7368 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)) = (((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
10572, 88, 1043eqtr4d 2774 . . 3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘)) = (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
1061, 2, 3, 4, 5, 18, 26, 27, 63, 105isnatd 49196 . 2 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ (⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩(𝐶 Nat 𝐸)⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩))
10714, 22oveq12d 7371 . 2 (𝜑 → ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)) = (⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩(𝐶 Nat 𝐸)⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩))
108106, 107eleqtrrd 2831 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cop 4585   class class class wbr 5095  ccom 5627  cfv 6486  (class class class)co 7353  cmpo 7355  Basecbs 17138  Hom chom 17190  compcco 17191   Func cfunc 17779   Nat cnat 17869  F cfuco 49289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ixp 8832  df-cat 17592  df-cid 17593  df-func 17783  df-cofu 17785  df-nat 17871  df-fuco 49290
This theorem is referenced by:  fuco22nat  49319
  Copyright terms: Public domain W3C validator