Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fuco22natlem Structured version   Visualization version   GIF version

Theorem fuco22natlem 49460
Description: The composed natural transformation is a natural transformation. Use fuco22nat 49461 instead. (New usage is discouraged.) (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fuco22natlem.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fuco22natlem.a (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
fuco22natlem.b (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
fuco22natlem.u (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
fuco22natlem.v (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
Assertion
Ref Expression
fuco22natlem (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))

Proof of Theorem fuco22natlem
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (𝐶 Nat 𝐸) = (𝐶 Nat 𝐸)
2 eqid 2733 . . 3 (Base‘𝐶) = (Base‘𝐶)
3 eqid 2733 . . 3 (Hom ‘𝐶) = (Hom ‘𝐶)
4 eqid 2733 . . 3 (Hom ‘𝐸) = (Hom ‘𝐸)
5 eqid 2733 . . 3 (comp‘𝐸) = (comp‘𝐸)
6 fuco22natlem.o . . . . . 6 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7 eqid 2733 . . . . . . 7 (𝐶 Nat 𝐷) = (𝐶 Nat 𝐷)
8 fuco22natlem.a . . . . . . 7 (𝜑𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
97, 8natrcl2 49339 . . . . . 6 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 eqid 2733 . . . . . . 7 (𝐷 Nat 𝐸) = (𝐷 Nat 𝐸)
11 fuco22natlem.b . . . . . . 7 (𝜑𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
1210, 11natrcl2 49339 . . . . . 6 (𝜑𝐾(𝐷 Func 𝐸)𝐿)
13 fuco22natlem.u . . . . . 6 (𝜑𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
146, 9, 12, 13, 2fuco11a 49443 . . . . 5 (𝜑 → (𝑂𝑈) = ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩)
156, 9, 12, 13fuco11cl 49442 . . . . 5 (𝜑 → (𝑂𝑈) ∈ (𝐶 Func 𝐸))
1614, 15eqeltrrd 2834 . . . 4 (𝜑 → ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩ ∈ (𝐶 Func 𝐸))
17 df-br 5096 . . . 4 ((𝐾𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))) ↔ ⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩ ∈ (𝐶 Func 𝐸))
1816, 17sylibr 234 . . 3 (𝜑 → (𝐾𝐹)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))))
197, 8natrcl3 49340 . . . . . 6 (𝜑𝑀(𝐶 Func 𝐷)𝑁)
2010, 11natrcl3 49340 . . . . . 6 (𝜑𝑅(𝐷 Func 𝐸)𝑆)
21 fuco22natlem.v . . . . . 6 (𝜑𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
226, 19, 20, 21, 2fuco11a 49443 . . . . 5 (𝜑 → (𝑂𝑉) = ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩)
236, 19, 20, 21fuco11cl 49442 . . . . 5 (𝜑 → (𝑂𝑉) ∈ (𝐶 Func 𝐸))
2422, 23eqeltrrd 2834 . . . 4 (𝜑 → ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩ ∈ (𝐶 Func 𝐸))
25 df-br 5096 . . . 4 ((𝑅𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))) ↔ ⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩ ∈ (𝐶 Func 𝐸))
2624, 25sylibr 234 . . 3 (𝜑 → (𝑅𝑀)(𝐶 Func 𝐸)(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))))
276, 13, 21, 8, 11fucofn22 49455 . . 3 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) Fn (Base‘𝐶))
28 eqid 2733 . . . . 5 (Base‘𝐸) = (Base‘𝐸)
2912adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐾(𝐷 Func 𝐸)𝐿)
3029funcrcl3 49195 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐸 ∈ Cat)
31 eqid 2733 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
3231, 28, 29funcf1 17783 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐾:(Base‘𝐷)⟶(Base‘𝐸))
339adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹(𝐶 Func 𝐷)𝐺)
342, 31, 33funcf1 17783 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐹:(Base‘𝐶)⟶(Base‘𝐷))
35 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
3634, 35ffvelcdmd 7027 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐹𝑥) ∈ (Base‘𝐷))
3732, 36ffvelcdmd 7027 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝐹𝑥)) ∈ (Base‘𝐸))
3819adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑀(𝐶 Func 𝐷)𝑁)
392, 31, 38funcf1 17783 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑀:(Base‘𝐶)⟶(Base‘𝐷))
4039, 35ffvelcdmd 7027 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑀𝑥) ∈ (Base‘𝐷))
4132, 40ffvelcdmd 7027 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐾‘(𝑀𝑥)) ∈ (Base‘𝐸))
4220adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅(𝐷 Func 𝐸)𝑆)
4331, 28, 42funcf1 17783 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑅:(Base‘𝐷)⟶(Base‘𝐸))
4443, 40ffvelcdmd 7027 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑅‘(𝑀𝑥)) ∈ (Base‘𝐸))
45 eqid 2733 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
4631, 45, 4, 29, 36, 40funcf2 17785 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐹𝑥)𝐿(𝑀𝑥)):((𝐹𝑥)(Hom ‘𝐷)(𝑀𝑥))⟶((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝐾‘(𝑀𝑥))))
478adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
487, 47, 2, 45, 35natcl 17873 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐴𝑥) ∈ ((𝐹𝑥)(Hom ‘𝐷)(𝑀𝑥)))
4946, 48ffvelcdmd 7027 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥)) ∈ ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝐾‘(𝑀𝑥))))
5011adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
512, 31, 19funcf1 17783 . . . . . . 7 (𝜑𝑀:(Base‘𝐶)⟶(Base‘𝐷))
5251ffvelcdmda 7026 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑀𝑥) ∈ (Base‘𝐷))
5310, 50, 31, 4, 52natcl 17873 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐵‘(𝑀𝑥)) ∈ ((𝐾‘(𝑀𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
5428, 4, 5, 30, 37, 41, 44, 49, 53catcocl 17601 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))) ∈ ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
556adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
5613adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
5721adantr 480 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
58 eqidd 2734 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))) = (⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥))))
5955, 56, 57, 47, 50, 35, 58fuco23 49456 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) = ((𝐵‘(𝑀𝑥))(⟨(𝐾‘(𝐹𝑥)), (𝐾‘(𝑀𝑥))⟩(comp‘𝐸)(𝑅‘(𝑀𝑥)))(((𝐹𝑥)𝐿(𝑀𝑥))‘(𝐴𝑥))))
6034, 35fvco3d 6931 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
6139, 35fvco3d 6931 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝑅𝑀)‘𝑥) = (𝑅‘(𝑀𝑥)))
6260, 61oveq12d 7373 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → (((𝐾𝐹)‘𝑥)(Hom ‘𝐸)((𝑅𝑀)‘𝑥)) = ((𝐾‘(𝐹𝑥))(Hom ‘𝐸)(𝑅‘(𝑀𝑥))))
6354, 59, 623eltr4d 2848 . . 3 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥) ∈ (((𝐾𝐹)‘𝑥)(Hom ‘𝐸)((𝑅𝑀)‘𝑥)))
64 simplrl 776 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
65 simplrr 777 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
668ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐴 ∈ (⟨𝐹, 𝐺⟩(𝐶 Nat 𝐷)⟨𝑀, 𝑁⟩))
67 simpr 484 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ∈ (𝑥(Hom ‘𝐶)𝑦))
6811ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐵 ∈ (⟨𝐾, 𝐿⟩(𝐷 Nat 𝐸)⟨𝑅, 𝑆⟩))
696ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
7013ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑈 = ⟨⟨𝐾, 𝐿⟩, ⟨𝐹, 𝐺⟩⟩)
7121ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑉 = ⟨⟨𝑅, 𝑆⟩, ⟨𝑀, 𝑁⟩⟩)
7264, 65, 66, 67, 68, 69, 70, 71fuco22natlem3 49459 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘)) = (((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
73 fveq2 6831 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝐹𝑧) = (𝐹𝑥))
7473oveq1d 7370 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝐹𝑧)𝐿(𝐹𝑤)) = ((𝐹𝑥)𝐿(𝐹𝑤)))
75 oveq1 7362 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝐺𝑤) = (𝑥𝐺𝑤))
7674, 75coeq12d 5811 . . . . . . . 8 (𝑧 = 𝑥 → (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)) = (((𝐹𝑥)𝐿(𝐹𝑤)) ∘ (𝑥𝐺𝑤)))
77 fveq2 6831 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝐹𝑤) = (𝐹𝑦))
7877oveq2d 7371 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝐹𝑥)𝐿(𝐹𝑤)) = ((𝐹𝑥)𝐿(𝐹𝑦)))
79 oveq2 7363 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝐺𝑤) = (𝑥𝐺𝑦))
8078, 79coeq12d 5811 . . . . . . . 8 (𝑤 = 𝑦 → (((𝐹𝑥)𝐿(𝐹𝑤)) ∘ (𝑥𝐺𝑤)) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
81 eqid 2733 . . . . . . . 8 (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))
82 ovex 7388 . . . . . . . . 9 ((𝐹𝑥)𝐿(𝐹𝑦)) ∈ V
83 ovex 7388 . . . . . . . . 9 (𝑥𝐺𝑦) ∈ V
8482, 83coex 7869 . . . . . . . 8 (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)) ∈ V
8576, 80, 81, 84ovmpo 7515 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
8685ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦) = (((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦)))
8786fveq1d 6833 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘) = ((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘))
8887oveq2d 7371 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘)) = (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((((𝐹𝑥)𝐿(𝐹𝑦)) ∘ (𝑥𝐺𝑦))‘)))
89 fveq2 6831 . . . . . . . . . 10 (𝑧 = 𝑥 → (𝑀𝑧) = (𝑀𝑥))
9089oveq1d 7370 . . . . . . . . 9 (𝑧 = 𝑥 → ((𝑀𝑧)𝑆(𝑀𝑤)) = ((𝑀𝑥)𝑆(𝑀𝑤)))
91 oveq1 7362 . . . . . . . . 9 (𝑧 = 𝑥 → (𝑧𝑁𝑤) = (𝑥𝑁𝑤))
9290, 91coeq12d 5811 . . . . . . . 8 (𝑧 = 𝑥 → (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)) = (((𝑀𝑥)𝑆(𝑀𝑤)) ∘ (𝑥𝑁𝑤)))
93 fveq2 6831 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑀𝑤) = (𝑀𝑦))
9493oveq2d 7371 . . . . . . . . 9 (𝑤 = 𝑦 → ((𝑀𝑥)𝑆(𝑀𝑤)) = ((𝑀𝑥)𝑆(𝑀𝑦)))
95 oveq2 7363 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑥𝑁𝑤) = (𝑥𝑁𝑦))
9694, 95coeq12d 5811 . . . . . . . 8 (𝑤 = 𝑦 → (((𝑀𝑥)𝑆(𝑀𝑤)) ∘ (𝑥𝑁𝑤)) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
97 eqid 2733 . . . . . . . 8 (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤))) = (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))
98 ovex 7388 . . . . . . . . 9 ((𝑀𝑥)𝑆(𝑀𝑦)) ∈ V
99 ovex 7388 . . . . . . . . 9 (𝑥𝑁𝑦) ∈ V
10098, 99coex 7869 . . . . . . . 8 (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)) ∈ V
10192, 96, 97, 100ovmpo 7515 . . . . . . 7 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
102101ad2antlr 727 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦) = (((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦)))
103102fveq1d 6833 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘) = ((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘))
104103oveq1d 7370 . . . 4 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)) = (((((𝑀𝑥)𝑆(𝑀𝑦)) ∘ (𝑥𝑁𝑦))‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
10572, 88, 1043eqtr4d 2778 . . 3 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ ∈ (𝑥(Hom ‘𝐶)𝑦)) → (((𝐵(𝑈𝑃𝑉)𝐴)‘𝑦)(⟨((𝐾𝐹)‘𝑥), ((𝐾𝐹)‘𝑦)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))𝑦)‘)) = (((𝑥(𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))𝑦)‘)(⟨((𝐾𝐹)‘𝑥), ((𝑅𝑀)‘𝑥)⟩(comp‘𝐸)((𝑅𝑀)‘𝑦))((𝐵(𝑈𝑃𝑉)𝐴)‘𝑥)))
1061, 2, 3, 4, 5, 18, 26, 27, 63, 105isnatd 49338 . 2 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ (⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩(𝐶 Nat 𝐸)⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩))
10714, 22oveq12d 7373 . 2 (𝜑 → ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)) = (⟨(𝐾𝐹), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝐹𝑧)𝐿(𝐹𝑤)) ∘ (𝑧𝐺𝑤)))⟩(𝐶 Nat 𝐸)⟨(𝑅𝑀), (𝑧 ∈ (Base‘𝐶), 𝑤 ∈ (Base‘𝐶) ↦ (((𝑀𝑧)𝑆(𝑀𝑤)) ∘ (𝑧𝑁𝑤)))⟩))
108106, 107eleqtrrd 2836 1 (𝜑 → (𝐵(𝑈𝑃𝑉)𝐴) ∈ ((𝑂𝑈)(𝐶 Nat 𝐸)(𝑂𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4583   class class class wbr 5095  ccom 5625  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17130  Hom chom 17182  compcco 17183   Func cfunc 17771   Nat cnat 17861  F cfuco 49431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-ixp 8831  df-cat 17584  df-cid 17585  df-func 17775  df-cofu 17777  df-nat 17863  df-fuco 49432
This theorem is referenced by:  fuco22nat  49461
  Copyright terms: Public domain W3C validator