| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fuco112 | Structured version Visualization version GIF version | ||
| Description: The object part of the functor composition bifunctor maps two functors to their composition, expressed explicitly for the morphism part of the composed functor. (Contributed by Zhi Wang, 3-Oct-2025.) |
| Ref | Expression |
|---|---|
| fuco11.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fuco11.f | ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| fuco11.k | ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) |
| fuco11.u | ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) |
| fuco11a.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| fuco112 | ⊢ (𝜑 → (2nd ‘(𝑂‘𝑈)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fuco11.o | . . . 4 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 2 | fuco11.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) | |
| 3 | fuco11.k | . . . 4 ⊢ (𝜑 → 𝐾(𝐷 Func 𝐸)𝐿) | |
| 4 | fuco11.u | . . . 4 ⊢ (𝜑 → 𝑈 = 〈〈𝐾, 𝐿〉, 〈𝐹, 𝐺〉〉) | |
| 5 | fuco11a.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 6 | 1, 2, 3, 4, 5 | fuco11a 49223 | . . 3 ⊢ (𝜑 → (𝑂‘𝑈) = 〈(𝐾 ∘ 𝐹), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) |
| 7 | 6 | fveq2d 6869 | . 2 ⊢ (𝜑 → (2nd ‘(𝑂‘𝑈)) = (2nd ‘〈(𝐾 ∘ 𝐹), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉)) |
| 8 | relfunc 17830 | . . . . . 6 ⊢ Rel (𝐷 Func 𝐸) | |
| 9 | 8 | brrelex1i 5702 | . . . . 5 ⊢ (𝐾(𝐷 Func 𝐸)𝐿 → 𝐾 ∈ V) |
| 10 | 3, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ V) |
| 11 | relfunc 17830 | . . . . . 6 ⊢ Rel (𝐶 Func 𝐷) | |
| 12 | 11 | brrelex1i 5702 | . . . . 5 ⊢ (𝐹(𝐶 Func 𝐷)𝐺 → 𝐹 ∈ V) |
| 13 | 2, 12 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 14 | 10, 13 | coexd 7916 | . . 3 ⊢ (𝜑 → (𝐾 ∘ 𝐹) ∈ V) |
| 15 | 5 | fvexi 6879 | . . . 4 ⊢ 𝐵 ∈ V |
| 16 | 15, 15 | mpoex 8067 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) ∈ V |
| 17 | op2ndg 7990 | . . 3 ⊢ (((𝐾 ∘ 𝐹) ∈ V ∧ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦))) ∈ V) → (2nd ‘〈(𝐾 ∘ 𝐹), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))) | |
| 18 | 14, 16, 17 | sylancl 586 | . 2 ⊢ (𝜑 → (2nd ‘〈(𝐾 ∘ 𝐹), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))〉) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))) |
| 19 | 7, 18 | eqtrd 2765 | 1 ⊢ (𝜑 → (2nd ‘(𝑂‘𝑈)) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (((𝐹‘𝑥)𝐿(𝐹‘𝑦)) ∘ (𝑥𝐺𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3455 〈cop 4603 class class class wbr 5115 ∘ ccom 5650 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 2nd c2nd 7976 Basecbs 17185 Func cfunc 17822 ∘F cfuco 49211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-1st 7977 df-2nd 7978 df-map 8805 df-ixp 8875 df-func 17826 df-cofu 17828 df-fuco 49212 |
| This theorem is referenced by: fuco112x 49227 |
| Copyright terms: Public domain | W3C validator |