MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcixp Structured version   Visualization version   GIF version

Theorem funcixp 17498
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcixp.b 𝐵 = (Base‘𝐷)
funcixp.h 𝐻 = (Hom ‘𝐷)
funcixp.j 𝐽 = (Hom ‘𝐸)
funcixp.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
funcixp (𝜑𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐷   𝑧,𝐸   𝜑,𝑧   𝑧,𝐹   𝑧,𝐺   𝑧,𝐽   𝑧,𝐻

Proof of Theorem funcixp
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcixp.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2 funcixp.b . . . 4 𝐵 = (Base‘𝐷)
3 eqid 2738 . . . 4 (Base‘𝐸) = (Base‘𝐸)
4 funcixp.h . . . 4 𝐻 = (Hom ‘𝐷)
5 funcixp.j . . . 4 𝐽 = (Hom ‘𝐸)
6 eqid 2738 . . . 4 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2738 . . . 4 (Id‘𝐸) = (Id‘𝐸)
8 eqid 2738 . . . 4 (comp‘𝐷) = (comp‘𝐷)
9 eqid 2738 . . . 4 (comp‘𝐸) = (comp‘𝐸)
10 df-br 5071 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
111, 10sylib 217 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
12 funcrcl 17494 . . . . . 6 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . 5 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simpld 494 . . . 4 (𝜑𝐷 ∈ Cat)
1513simprd 495 . . . 4 (𝜑𝐸 ∈ Cat)
162, 3, 4, 5, 6, 7, 8, 9, 14, 15isfunc 17495 . . 3 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
171, 16mpbid 231 . 2 (𝜑 → (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))
1817simp2d 1141 1 (𝜑𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cop 4564   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  m cmap 8573  Xcixp 8643  Basecbs 16840  Hom chom 16899  compcco 16900  Catccat 17290  Idccid 17291   Func cfunc 17485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ixp 8644  df-func 17489
This theorem is referenced by:  funcf2  17499  funcfn2  17500  wunfunc  17530  wunfuncOLD  17531
  Copyright terms: Public domain W3C validator