MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcixp Structured version   Visualization version   GIF version

Theorem funcixp 17582
Description: The morphism part of a functor is a function on homsets. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcixp.b 𝐵 = (Base‘𝐷)
funcixp.h 𝐻 = (Hom ‘𝐷)
funcixp.j 𝐽 = (Hom ‘𝐸)
funcixp.f (𝜑𝐹(𝐷 Func 𝐸)𝐺)
Assertion
Ref Expression
funcixp (𝜑𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
Distinct variable groups:   𝑧,𝐵   𝑧,𝐷   𝑧,𝐸   𝜑,𝑧   𝑧,𝐹   𝑧,𝐺   𝑧,𝐽   𝑧,𝐻

Proof of Theorem funcixp
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcixp.f . . 3 (𝜑𝐹(𝐷 Func 𝐸)𝐺)
2 funcixp.b . . . 4 𝐵 = (Base‘𝐷)
3 eqid 2738 . . . 4 (Base‘𝐸) = (Base‘𝐸)
4 funcixp.h . . . 4 𝐻 = (Hom ‘𝐷)
5 funcixp.j . . . 4 𝐽 = (Hom ‘𝐸)
6 eqid 2738 . . . 4 (Id‘𝐷) = (Id‘𝐷)
7 eqid 2738 . . . 4 (Id‘𝐸) = (Id‘𝐸)
8 eqid 2738 . . . 4 (comp‘𝐷) = (comp‘𝐷)
9 eqid 2738 . . . 4 (comp‘𝐸) = (comp‘𝐸)
10 df-br 5075 . . . . . . 7 (𝐹(𝐷 Func 𝐸)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
111, 10sylib 217 . . . . . 6 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸))
12 funcrcl 17578 . . . . . 6 (⟨𝐹, 𝐺⟩ ∈ (𝐷 Func 𝐸) → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1311, 12syl 17 . . . . 5 (𝜑 → (𝐷 ∈ Cat ∧ 𝐸 ∈ Cat))
1413simpld 495 . . . 4 (𝜑𝐷 ∈ Cat)
1513simprd 496 . . . 4 (𝜑𝐸 ∈ Cat)
162, 3, 4, 5, 6, 7, 8, 9, 14, 15isfunc 17579 . . 3 (𝜑 → (𝐹(𝐷 Func 𝐸)𝐺 ↔ (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚))))))
171, 16mpbid 231 . 2 (𝜑 → (𝐹:𝐵⟶(Base‘𝐸) ∧ 𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)) ∧ ∀𝑥𝐵 (((𝑥𝐺𝑥)‘((Id‘𝐷)‘𝑥)) = ((Id‘𝐸)‘(𝐹𝑥)) ∧ ∀𝑦𝐵𝑧𝐵𝑚 ∈ (𝑥𝐻𝑦)∀𝑛 ∈ (𝑦𝐻𝑧)((𝑥𝐺𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑚)) = (((𝑦𝐺𝑧)‘𝑛)(⟨(𝐹𝑥), (𝐹𝑦)⟩(comp‘𝐸)(𝐹𝑧))((𝑥𝐺𝑦)‘𝑚)))))
1817simp2d 1142 1 (𝜑𝐺X𝑧 ∈ (𝐵 × 𝐵)(((𝐹‘(1st𝑧))𝐽(𝐹‘(2nd𝑧))) ↑m (𝐻𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cop 4567   class class class wbr 5074   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  m cmap 8615  Xcixp 8685  Basecbs 16912  Hom chom 16973  compcco 16974  Catccat 17373  Idccid 17374   Func cfunc 17569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-ixp 8686  df-func 17573
This theorem is referenced by:  funcf2  17583  funcfn2  17584  wunfunc  17614  wunfuncOLD  17615
  Copyright terms: Public domain W3C validator