| Step | Hyp | Ref
| Expression |
| 1 | | naddov 8699 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)}) |
| 2 | | snssi 4790 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → {𝐴} ⊆ On) |
| 3 | | onss 7788 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
| 4 | | xpss12 5682 |
. . . . . . . . 9
⊢ (({𝐴} ⊆ On ∧ 𝐵 ⊆ On) → ({𝐴} × 𝐵) ⊆ (On × On)) |
| 5 | 2, 3, 4 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴} × 𝐵) ⊆ (On × On)) |
| 6 | | naddfn 8696 |
. . . . . . . . 9
⊢ +no Fn
(On × On) |
| 7 | 6 | fndmi 6653 |
. . . . . . . 8
⊢ dom +no =
(On × On) |
| 8 | 5, 7 | sseqtrrdi 4007 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴} × 𝐵) ⊆ dom +no ) |
| 9 | | fnfun 6649 |
. . . . . . . . 9
⊢ ( +no Fn
(On × On) → Fun +no ) |
| 10 | 6, 9 | ax-mp 5 |
. . . . . . . 8
⊢ Fun
+no |
| 11 | | funimassov 7593 |
. . . . . . . 8
⊢ ((Fun +no
∧ ({𝐴} × 𝐵) ⊆ dom +no ) → ((
+no “ ({𝐴} ×
𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦 ∈ 𝐵 (𝑡 +no 𝑦) ∈ 𝑥)) |
| 12 | 10, 11 | mpan 690 |
. . . . . . 7
⊢ (({𝐴} × 𝐵) ⊆ dom +no → (( +no “
({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦 ∈ 𝐵 (𝑡 +no 𝑦) ∈ 𝑥)) |
| 13 | 8, 12 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no
“ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦 ∈ 𝐵 (𝑡 +no 𝑦) ∈ 𝑥)) |
| 14 | | oveq1 7421 |
. . . . . . . . . 10
⊢ (𝑡 = 𝐴 → (𝑡 +no 𝑦) = (𝐴 +no 𝑦)) |
| 15 | 14 | eleq1d 2818 |
. . . . . . . . 9
⊢ (𝑡 = 𝐴 → ((𝑡 +no 𝑦) ∈ 𝑥 ↔ (𝐴 +no 𝑦) ∈ 𝑥)) |
| 16 | 15 | ralbidv 3165 |
. . . . . . . 8
⊢ (𝑡 = 𝐴 → (∀𝑦 ∈ 𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐵 (𝐴 +no 𝑦) ∈ 𝑥)) |
| 17 | 16 | ralsng 4657 |
. . . . . . 7
⊢ (𝐴 ∈ On → (∀𝑡 ∈ {𝐴}∀𝑦 ∈ 𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐵 (𝐴 +no 𝑦) ∈ 𝑥)) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) →
(∀𝑡 ∈ {𝐴}∀𝑦 ∈ 𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐵 (𝐴 +no 𝑦) ∈ 𝑥)) |
| 19 | 13, 18 | bitrd 279 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no
“ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑦 ∈ 𝐵 (𝐴 +no 𝑦) ∈ 𝑥)) |
| 20 | | onss 7788 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → 𝐴 ⊆ On) |
| 21 | | snssi 4790 |
. . . . . . . . 9
⊢ (𝐵 ∈ On → {𝐵} ⊆ On) |
| 22 | | xpss12 5682 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ On ∧ {𝐵} ⊆ On) → (𝐴 × {𝐵}) ⊆ (On × On)) |
| 23 | 20, 21, 22 | syl2an 596 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × {𝐵}) ⊆ (On × On)) |
| 24 | 23, 7 | sseqtrrdi 4007 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × {𝐵}) ⊆ dom +no ) |
| 25 | | funimassov 7593 |
. . . . . . . 8
⊢ ((Fun +no
∧ (𝐴 × {𝐵}) ⊆ dom +no ) → ((
+no “ (𝐴 ×
{𝐵})) ⊆ 𝑥 ↔ ∀𝑧 ∈ 𝐴 ∀𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥)) |
| 26 | 10, 25 | mpan 690 |
. . . . . . 7
⊢ ((𝐴 × {𝐵}) ⊆ dom +no → (( +no “
(𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧 ∈ 𝐴 ∀𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥)) |
| 27 | 24, 26 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no
“ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧 ∈ 𝐴 ∀𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥)) |
| 28 | | oveq2 7422 |
. . . . . . . . . 10
⊢ (𝑡 = 𝐵 → (𝑧 +no 𝑡) = (𝑧 +no 𝐵)) |
| 29 | 28 | eleq1d 2818 |
. . . . . . . . 9
⊢ (𝑡 = 𝐵 → ((𝑧 +no 𝑡) ∈ 𝑥 ↔ (𝑧 +no 𝐵) ∈ 𝑥)) |
| 30 | 29 | ralsng 4657 |
. . . . . . . 8
⊢ (𝐵 ∈ On → (∀𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ (𝑧 +no 𝐵) ∈ 𝑥)) |
| 31 | 30 | ralbidv 3165 |
. . . . . . 7
⊢ (𝐵 ∈ On → (∀𝑧 ∈ 𝐴 ∀𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝐵) ∈ 𝑥)) |
| 32 | 31 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) →
(∀𝑧 ∈ 𝐴 ∀𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝐵) ∈ 𝑥)) |
| 33 | 27, 32 | bitrd 279 |
. . . . 5
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no
“ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝐵) ∈ 𝑥)) |
| 34 | 19, 33 | anbi12d 632 |
. . . 4
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((( +no
“ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥) ↔ (∀𝑦 ∈ 𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝐵) ∈ 𝑥))) |
| 35 | 34 | rabbidv 3428 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∈ On ∣ (( +no
“ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑦 ∈ 𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝐵) ∈ 𝑥)}) |
| 36 | 35 | inteqd 4933 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∩ {𝑥
∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)} = ∩ {𝑥 ∈ On ∣
(∀𝑦 ∈ 𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝐵) ∈ 𝑥)}) |
| 37 | 1, 36 | eqtrd 2769 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = ∩ {𝑥 ∈ On ∣
(∀𝑦 ∈ 𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧 ∈ 𝐴 (𝑧 +no 𝐵) ∈ 𝑥)}) |