MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddov2 Structured version   Visualization version   GIF version

Theorem naddov2 8654
Description: Alternate expression for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddov2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑧,𝐴   𝑦,𝐵   𝑧,𝐵   𝑥,𝑦   𝑥,𝑧

Proof of Theorem naddov2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 naddov 8653 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
2 snssi 4780 . . . . . . . . 9 (𝐴 ∈ On → {𝐴} ⊆ On)
3 onss 7768 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
4 xpss12 5661 . . . . . . . . 9 (({𝐴} ⊆ On ∧ 𝐵 ⊆ On) → ({𝐴} × 𝐵) ⊆ (On × On))
52, 3, 4syl2an 596 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴} × 𝐵) ⊆ (On × On))
6 naddfn 8650 . . . . . . . . 9 +no Fn (On × On)
76fndmi 6630 . . . . . . . 8 dom +no = (On × On)
85, 7sseqtrrdi 3996 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴} × 𝐵) ⊆ dom +no )
9 fnfun 6626 . . . . . . . . 9 ( +no Fn (On × On) → Fun +no )
106, 9ax-mp 5 . . . . . . . 8 Fun +no
11 funimassov 7573 . . . . . . . 8 ((Fun +no ∧ ({𝐴} × 𝐵) ⊆ dom +no ) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
1210, 11mpan 690 . . . . . . 7 (({𝐴} × 𝐵) ⊆ dom +no → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
138, 12syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
14 oveq1 7401 . . . . . . . . . 10 (𝑡 = 𝐴 → (𝑡 +no 𝑦) = (𝐴 +no 𝑦))
1514eleq1d 2814 . . . . . . . . 9 (𝑡 = 𝐴 → ((𝑡 +no 𝑦) ∈ 𝑥 ↔ (𝐴 +no 𝑦) ∈ 𝑥))
1615ralbidv 3158 . . . . . . . 8 (𝑡 = 𝐴 → (∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1716ralsng 4647 . . . . . . 7 (𝐴 ∈ On → (∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1817adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1913, 18bitrd 279 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
20 onss 7768 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ⊆ On)
21 snssi 4780 . . . . . . . . 9 (𝐵 ∈ On → {𝐵} ⊆ On)
22 xpss12 5661 . . . . . . . . 9 ((𝐴 ⊆ On ∧ {𝐵} ⊆ On) → (𝐴 × {𝐵}) ⊆ (On × On))
2320, 21, 22syl2an 596 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × {𝐵}) ⊆ (On × On))
2423, 7sseqtrrdi 3996 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × {𝐵}) ⊆ dom +no )
25 funimassov 7573 . . . . . . . 8 ((Fun +no ∧ (𝐴 × {𝐵}) ⊆ dom +no ) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
2610, 25mpan 690 . . . . . . 7 ((𝐴 × {𝐵}) ⊆ dom +no → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
2724, 26syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
28 oveq2 7402 . . . . . . . . . 10 (𝑡 = 𝐵 → (𝑧 +no 𝑡) = (𝑧 +no 𝐵))
2928eleq1d 2814 . . . . . . . . 9 (𝑡 = 𝐵 → ((𝑧 +no 𝑡) ∈ 𝑥 ↔ (𝑧 +no 𝐵) ∈ 𝑥))
3029ralsng 4647 . . . . . . . 8 (𝐵 ∈ On → (∀𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ (𝑧 +no 𝐵) ∈ 𝑥))
3130ralbidv 3158 . . . . . . 7 (𝐵 ∈ On → (∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3231adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3327, 32bitrd 279 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3419, 33anbi12d 632 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥) ↔ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)))
3534rabbidv 3419 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
3635inteqd 4923 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
371, 36eqtrd 2765 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3046  {crab 3411  wss 3922  {csn 4597   cint 4918   × cxp 5644  dom cdm 5646  cima 5649  Oncon0 6340  Fun wfun 6513   Fn wfn 6514  (class class class)co 7394   +no cnadd 8640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-frecs 8269  df-nadd 8641
This theorem is referenced by:  naddcom  8657  naddrid  8658  naddssim  8660  naddelim  8661  naddsuc2  8676  naddov4  43344  nadd1suc  43353
  Copyright terms: Public domain W3C validator