Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddov2 Structured version   Visualization version   GIF version

Theorem naddov2 33432
Description: Alternate expression for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddov2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑧,𝐴   𝑦,𝐵   𝑧,𝐵   𝑥,𝑦   𝑥,𝑧

Proof of Theorem naddov2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 naddov 33431 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
2 snssi 4701 . . . . . . . . 9 (𝐴 ∈ On → {𝐴} ⊆ On)
3 onss 7510 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
4 xpss12 5543 . . . . . . . . 9 (({𝐴} ⊆ On ∧ 𝐵 ⊆ On) → ({𝐴} × 𝐵) ⊆ (On × On))
52, 3, 4syl2an 598 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴} × 𝐵) ⊆ (On × On))
6 naddfn 33428 . . . . . . . . 9 +no Fn (On × On)
76fndmi 6442 . . . . . . . 8 dom +no = (On × On)
85, 7sseqtrrdi 3945 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴} × 𝐵) ⊆ dom +no )
9 fnfun 6439 . . . . . . . . 9 ( +no Fn (On × On) → Fun +no )
106, 9ax-mp 5 . . . . . . . 8 Fun +no
11 funimassov 7327 . . . . . . . 8 ((Fun +no ∧ ({𝐴} × 𝐵) ⊆ dom +no ) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
1210, 11mpan 689 . . . . . . 7 (({𝐴} × 𝐵) ⊆ dom +no → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
138, 12syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
14 oveq1 7163 . . . . . . . . . 10 (𝑡 = 𝐴 → (𝑡 +no 𝑦) = (𝐴 +no 𝑦))
1514eleq1d 2836 . . . . . . . . 9 (𝑡 = 𝐴 → ((𝑡 +no 𝑦) ∈ 𝑥 ↔ (𝐴 +no 𝑦) ∈ 𝑥))
1615ralbidv 3126 . . . . . . . 8 (𝑡 = 𝐴 → (∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1716ralsng 4573 . . . . . . 7 (𝐴 ∈ On → (∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1817adantr 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1913, 18bitrd 282 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
20 onss 7510 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ⊆ On)
21 snssi 4701 . . . . . . . . 9 (𝐵 ∈ On → {𝐵} ⊆ On)
22 xpss12 5543 . . . . . . . . 9 ((𝐴 ⊆ On ∧ {𝐵} ⊆ On) → (𝐴 × {𝐵}) ⊆ (On × On))
2320, 21, 22syl2an 598 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × {𝐵}) ⊆ (On × On))
2423, 7sseqtrrdi 3945 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × {𝐵}) ⊆ dom +no )
25 funimassov 7327 . . . . . . . 8 ((Fun +no ∧ (𝐴 × {𝐵}) ⊆ dom +no ) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
2610, 25mpan 689 . . . . . . 7 ((𝐴 × {𝐵}) ⊆ dom +no → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
2724, 26syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
28 oveq2 7164 . . . . . . . . . 10 (𝑡 = 𝐵 → (𝑧 +no 𝑡) = (𝑧 +no 𝐵))
2928eleq1d 2836 . . . . . . . . 9 (𝑡 = 𝐵 → ((𝑧 +no 𝑡) ∈ 𝑥 ↔ (𝑧 +no 𝐵) ∈ 𝑥))
3029ralsng 4573 . . . . . . . 8 (𝐵 ∈ On → (∀𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ (𝑧 +no 𝐵) ∈ 𝑥))
3130ralbidv 3126 . . . . . . 7 (𝐵 ∈ On → (∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3231adantl 485 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3327, 32bitrd 282 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3419, 33anbi12d 633 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥) ↔ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)))
3534rabbidv 3392 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
3635inteqd 4846 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
371, 36eqtrd 2793 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3070  {crab 3074  wss 3860  {csn 4525   cint 4841   × cxp 5526  dom cdm 5528  cima 5531  Oncon0 6174  Fun wfun 6334   Fn wfn 6335  (class class class)co 7156   +no cnadd 33422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7699  df-2nd 7700  df-frecs 33393  df-nadd 33423
This theorem is referenced by:  naddcom  33433  naddid1  33434  naddssim  33435  naddelim  33436
  Copyright terms: Public domain W3C validator