MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddov2 Structured version   Visualization version   GIF version

Theorem naddov2 8620
Description: Alternate expression for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddov2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑧,𝐴   𝑦,𝐵   𝑧,𝐵   𝑥,𝑦   𝑥,𝑧

Proof of Theorem naddov2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 naddov 8619 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
2 snssi 4768 . . . . . . . . 9 (𝐴 ∈ On → {𝐴} ⊆ On)
3 onss 7741 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
4 xpss12 5646 . . . . . . . . 9 (({𝐴} ⊆ On ∧ 𝐵 ⊆ On) → ({𝐴} × 𝐵) ⊆ (On × On))
52, 3, 4syl2an 596 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴} × 𝐵) ⊆ (On × On))
6 naddfn 8616 . . . . . . . . 9 +no Fn (On × On)
76fndmi 6604 . . . . . . . 8 dom +no = (On × On)
85, 7sseqtrrdi 3985 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴} × 𝐵) ⊆ dom +no )
9 fnfun 6600 . . . . . . . . 9 ( +no Fn (On × On) → Fun +no )
106, 9ax-mp 5 . . . . . . . 8 Fun +no
11 funimassov 7546 . . . . . . . 8 ((Fun +no ∧ ({𝐴} × 𝐵) ⊆ dom +no ) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
1210, 11mpan 690 . . . . . . 7 (({𝐴} × 𝐵) ⊆ dom +no → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
138, 12syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
14 oveq1 7376 . . . . . . . . . 10 (𝑡 = 𝐴 → (𝑡 +no 𝑦) = (𝐴 +no 𝑦))
1514eleq1d 2813 . . . . . . . . 9 (𝑡 = 𝐴 → ((𝑡 +no 𝑦) ∈ 𝑥 ↔ (𝐴 +no 𝑦) ∈ 𝑥))
1615ralbidv 3156 . . . . . . . 8 (𝑡 = 𝐴 → (∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1716ralsng 4635 . . . . . . 7 (𝐴 ∈ On → (∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1817adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1913, 18bitrd 279 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
20 onss 7741 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ⊆ On)
21 snssi 4768 . . . . . . . . 9 (𝐵 ∈ On → {𝐵} ⊆ On)
22 xpss12 5646 . . . . . . . . 9 ((𝐴 ⊆ On ∧ {𝐵} ⊆ On) → (𝐴 × {𝐵}) ⊆ (On × On))
2320, 21, 22syl2an 596 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × {𝐵}) ⊆ (On × On))
2423, 7sseqtrrdi 3985 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × {𝐵}) ⊆ dom +no )
25 funimassov 7546 . . . . . . . 8 ((Fun +no ∧ (𝐴 × {𝐵}) ⊆ dom +no ) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
2610, 25mpan 690 . . . . . . 7 ((𝐴 × {𝐵}) ⊆ dom +no → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
2724, 26syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
28 oveq2 7377 . . . . . . . . . 10 (𝑡 = 𝐵 → (𝑧 +no 𝑡) = (𝑧 +no 𝐵))
2928eleq1d 2813 . . . . . . . . 9 (𝑡 = 𝐵 → ((𝑧 +no 𝑡) ∈ 𝑥 ↔ (𝑧 +no 𝐵) ∈ 𝑥))
3029ralsng 4635 . . . . . . . 8 (𝐵 ∈ On → (∀𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ (𝑧 +no 𝐵) ∈ 𝑥))
3130ralbidv 3156 . . . . . . 7 (𝐵 ∈ On → (∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3231adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3327, 32bitrd 279 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3419, 33anbi12d 632 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥) ↔ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)))
3534rabbidv 3410 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
3635inteqd 4911 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
371, 36eqtrd 2764 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  wss 3911  {csn 4585   cint 4906   × cxp 5629  dom cdm 5631  cima 5634  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  (class class class)co 7369   +no cnadd 8606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-frecs 8237  df-nadd 8607
This theorem is referenced by:  naddcom  8623  naddrid  8624  naddssim  8626  naddelim  8627  naddsuc2  8642  naddov4  43365  nadd1suc  43374
  Copyright terms: Public domain W3C validator