MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddov2 Structured version   Visualization version   GIF version

Theorem naddov2 8594
Description: Alternate expression for natural addition. (Contributed by Scott Fenton, 26-Aug-2024.)
Assertion
Ref Expression
naddov2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴   𝑧,𝐴   𝑦,𝐵   𝑧,𝐵   𝑥,𝑦   𝑥,𝑧

Proof of Theorem naddov2
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 naddov 8593 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)})
2 snssi 4757 . . . . . . . . 9 (𝐴 ∈ On → {𝐴} ⊆ On)
3 onss 7718 . . . . . . . . 9 (𝐵 ∈ On → 𝐵 ⊆ On)
4 xpss12 5629 . . . . . . . . 9 (({𝐴} ⊆ On ∧ 𝐵 ⊆ On) → ({𝐴} × 𝐵) ⊆ (On × On))
52, 3, 4syl2an 596 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴} × 𝐵) ⊆ (On × On))
6 naddfn 8590 . . . . . . . . 9 +no Fn (On × On)
76fndmi 6585 . . . . . . . 8 dom +no = (On × On)
85, 7sseqtrrdi 3971 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ({𝐴} × 𝐵) ⊆ dom +no )
9 fnfun 6581 . . . . . . . . 9 ( +no Fn (On × On) → Fun +no )
106, 9ax-mp 5 . . . . . . . 8 Fun +no
11 funimassov 7523 . . . . . . . 8 ((Fun +no ∧ ({𝐴} × 𝐵) ⊆ dom +no ) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
1210, 11mpan 690 . . . . . . 7 (({𝐴} × 𝐵) ⊆ dom +no → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
138, 12syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥))
14 oveq1 7353 . . . . . . . . . 10 (𝑡 = 𝐴 → (𝑡 +no 𝑦) = (𝐴 +no 𝑦))
1514eleq1d 2816 . . . . . . . . 9 (𝑡 = 𝐴 → ((𝑡 +no 𝑦) ∈ 𝑥 ↔ (𝐴 +no 𝑦) ∈ 𝑥))
1615ralbidv 3155 . . . . . . . 8 (𝑡 = 𝐴 → (∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1716ralsng 4625 . . . . . . 7 (𝐴 ∈ On → (∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1817adantr 480 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑡 ∈ {𝐴}∀𝑦𝐵 (𝑡 +no 𝑦) ∈ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
1913, 18bitrd 279 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ↔ ∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥))
20 onss 7718 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ⊆ On)
21 snssi 4757 . . . . . . . . 9 (𝐵 ∈ On → {𝐵} ⊆ On)
22 xpss12 5629 . . . . . . . . 9 ((𝐴 ⊆ On ∧ {𝐵} ⊆ On) → (𝐴 × {𝐵}) ⊆ (On × On))
2320, 21, 22syl2an 596 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × {𝐵}) ⊆ (On × On))
2423, 7sseqtrrdi 3971 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 × {𝐵}) ⊆ dom +no )
25 funimassov 7523 . . . . . . . 8 ((Fun +no ∧ (𝐴 × {𝐵}) ⊆ dom +no ) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
2610, 25mpan 690 . . . . . . 7 ((𝐴 × {𝐵}) ⊆ dom +no → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
2724, 26syl 17 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥))
28 oveq2 7354 . . . . . . . . . 10 (𝑡 = 𝐵 → (𝑧 +no 𝑡) = (𝑧 +no 𝐵))
2928eleq1d 2816 . . . . . . . . 9 (𝑡 = 𝐵 → ((𝑧 +no 𝑡) ∈ 𝑥 ↔ (𝑧 +no 𝐵) ∈ 𝑥))
3029ralsng 4625 . . . . . . . 8 (𝐵 ∈ On → (∀𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ (𝑧 +no 𝐵) ∈ 𝑥))
3130ralbidv 3155 . . . . . . 7 (𝐵 ∈ On → (∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3231adantl 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑧𝐴𝑡 ∈ {𝐵} (𝑧 +no 𝑡) ∈ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3327, 32bitrd 279 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (( +no “ (𝐴 × {𝐵})) ⊆ 𝑥 ↔ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥))
3419, 33anbi12d 632 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥) ↔ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)))
3534rabbidv 3402 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
3635inteqd 4900 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝑥 ∈ On ∣ (( +no “ ({𝐴} × 𝐵)) ⊆ 𝑥 ∧ ( +no “ (𝐴 × {𝐵})) ⊆ 𝑥)} = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
371, 36eqtrd 2766 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no 𝐵) = {𝑥 ∈ On ∣ (∀𝑦𝐵 (𝐴 +no 𝑦) ∈ 𝑥 ∧ ∀𝑧𝐴 (𝑧 +no 𝐵) ∈ 𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  wss 3897  {csn 4573   cint 4895   × cxp 5612  dom cdm 5614  cima 5617  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  (class class class)co 7346   +no cnadd 8580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-frecs 8211  df-nadd 8581
This theorem is referenced by:  naddcom  8597  naddrid  8598  naddssim  8600  naddelim  8601  naddsuc2  8616  naddov4  43486  nadd1suc  43495
  Copyright terms: Public domain W3C validator