| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gaf | Structured version Visualization version GIF version | ||
| Description: The mapping of the group action operation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| Ref | Expression |
|---|---|
| gaf.1 | ⊢ 𝑋 = (Base‘𝐺) |
| Ref | Expression |
|---|---|
| gaf | ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaf.1 | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | eqid 2730 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | eqid 2730 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 4 | 1, 2, 3 | isga 19230 | . . 3 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (((0g‘𝐺) ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) |
| 5 | 4 | simprbi 496 | . 2 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (((0g‘𝐺) ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦(+g‘𝐺)𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥))))) |
| 6 | 5 | simpld 494 | 1 ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 × cxp 5639 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Grpcgrp 18872 GrpAct cga 19228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-ga 19229 |
| This theorem is referenced by: gafo 19235 gass 19240 gasubg 19241 gacan 19244 gapm 19245 gastacos 19249 orbsta 19252 galactghm 19341 sylow2alem2 19555 fxpgaval 33131 |
| Copyright terms: Public domain | W3C validator |