MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gaf Structured version   Visualization version   GIF version

Theorem gaf 19335
Description: The mapping of the group action operation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypothesis
Ref Expression
gaf.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gaf ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)

Proof of Theorem gaf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gaf.1 . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2740 . . . 4 (+g𝐺) = (+g𝐺)
3 eqid 2740 . . . 4 (0g𝐺) = (0g𝐺)
41, 2, 3isga 19331 . . 3 ( ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥))))))
54simprbi 496 . 2 ( ∈ (𝐺 GrpAct 𝑌) → ( :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥𝑌 (((0g𝐺) 𝑥) = 𝑥 ∧ ∀𝑦𝑋𝑧𝑋 ((𝑦(+g𝐺)𝑧) 𝑥) = (𝑦 (𝑧 𝑥)))))
65simpld 494 1 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973   GrpAct cga 19329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-ga 19330
This theorem is referenced by:  gafo  19336  gass  19341  gasubg  19342  gacan  19345  gapm  19346  gastacos  19350  orbsta  19353  galactghm  19446  sylow2alem2  19660
  Copyright terms: Public domain W3C validator