Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntrval2 Structured version   Visualization version   GIF version

Theorem cntrval2 33151
Description: Express the center 𝑍 of a group 𝑀 as the set of fixed points of the conjugation operation . (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
cntrval2.1 𝐵 = (Base‘𝑀)
cntrval2.2 + = (+g𝑀)
cntrval2.3 = (-g𝑀)
cntrval2.4 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥))
cntrval2.5 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntrval2 (𝑀 ∈ Grp → 𝑍 = (𝐵FixPts ))
Distinct variable groups:   𝑥, ,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem cntrval2
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → 𝑀 ∈ Grp)
2 cntrval2.1 . . . . . . . . 9 𝐵 = (Base‘𝑀)
3 cntrval2.3 . . . . . . . . 9 = (-g𝑀)
4 cntrval2.2 . . . . . . . . . 10 + = (+g𝑀)
5 simpr 484 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
6 simplr 768 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → 𝑧𝐵)
72, 4, 1, 5, 6grpcld 18870 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → (𝑝 + 𝑧) ∈ 𝐵)
82, 3, 1, 7, 5grpsubcld 33032 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑝 + 𝑧) 𝑝) ∈ 𝐵)
92, 4grprcan 18896 . . . . . . . 8 ((𝑀 ∈ Grp ∧ (((𝑝 + 𝑧) 𝑝) ∈ 𝐵𝑧𝐵𝑝𝐵)) → ((((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝) ↔ ((𝑝 + 𝑧) 𝑝) = 𝑧))
101, 8, 6, 5, 9syl13anc 1374 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝) ↔ ((𝑝 + 𝑧) 𝑝) = 𝑧))
112, 4, 3grpnpcan 18955 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ (𝑝 + 𝑧) ∈ 𝐵𝑝𝐵) → (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑝 + 𝑧))
121, 7, 5, 11syl3anc 1373 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑝 + 𝑧))
1312eqeq2d 2744 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑧 + 𝑝) = (((𝑝 + 𝑧) 𝑝) + 𝑝) ↔ (𝑧 + 𝑝) = (𝑝 + 𝑧)))
14 eqcom 2740 . . . . . . . 8 ((𝑧 + 𝑝) = (((𝑝 + 𝑧) 𝑝) + 𝑝) ↔ (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝))
1513, 14bitr3di 286 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑧 + 𝑝) = (𝑝 + 𝑧) ↔ (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝)))
16 cntrval2.4 . . . . . . . . . 10 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥))
1716a1i 11 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥)))
18 simprl 770 . . . . . . . . . . 11 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → 𝑥 = 𝑝)
19 simprr 772 . . . . . . . . . . 11 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → 𝑦 = 𝑧)
2018, 19oveq12d 7373 . . . . . . . . . 10 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → (𝑥 + 𝑦) = (𝑝 + 𝑧))
2120, 18oveq12d 7373 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → ((𝑥 + 𝑦) 𝑥) = ((𝑝 + 𝑧) 𝑝))
22 ovexd 7390 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑝 + 𝑧) 𝑝) ∈ V)
2317, 21, 5, 6, 22ovmpod 7507 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → (𝑝 𝑧) = ((𝑝 + 𝑧) 𝑝))
2423eqeq1d 2735 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑝 𝑧) = 𝑧 ↔ ((𝑝 + 𝑧) 𝑝) = 𝑧))
2510, 15, 243bitr4d 311 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑧 + 𝑝) = (𝑝 + 𝑧) ↔ (𝑝 𝑧) = 𝑧))
2625ralbidva 3155 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑧𝐵) → (∀𝑝𝐵 (𝑧 + 𝑝) = (𝑝 + 𝑧) ↔ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧))
2726pm5.32da 579 . . . 4 (𝑀 ∈ Grp → ((𝑧𝐵 ∧ ∀𝑝𝐵 (𝑧 + 𝑝) = (𝑝 + 𝑧)) ↔ (𝑧𝐵 ∧ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧)))
28 cntrval2.5 . . . . 5 𝑍 = (Cntr‘𝑀)
292, 4, 28elcntr 19252 . . . 4 (𝑧𝑍 ↔ (𝑧𝐵 ∧ ∀𝑝𝐵 (𝑧 + 𝑝) = (𝑝 + 𝑧)))
30 rabid 3418 . . . 4 (𝑧 ∈ {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧} ↔ (𝑧𝐵 ∧ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧))
3127, 29, 303bitr4g 314 . . 3 (𝑀 ∈ Grp → (𝑧𝑍𝑧 ∈ {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧}))
322, 4, 3, 16conjga 33150 . . . . 5 (𝑀 ∈ Grp → ∈ (𝑀 GrpAct 𝐵))
332, 32fxpgaval 33147 . . . 4 (𝑀 ∈ Grp → (𝐵FixPts ) = {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧})
3433eleq2d 2819 . . 3 (𝑀 ∈ Grp → (𝑧 ∈ (𝐵FixPts ) ↔ 𝑧 ∈ {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧}))
3531, 34bitr4d 282 . 2 (𝑀 ∈ Grp → (𝑧𝑍𝑧 ∈ (𝐵FixPts )))
3635eqrdv 2731 1 (𝑀 ∈ Grp → 𝑍 = (𝐵FixPts ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3049  {crab 3397  Vcvv 3438  cfv 6489  (class class class)co 7355  cmpo 7357  Basecbs 17130  +gcplusg 17171  Grpcgrp 18856  -gcsg 18858  Cntrccntr 19238  FixPtscfxp 33143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-minusg 18860  df-sbg 18861  df-ga 19212  df-cntz 19239  df-cntr 19240  df-fxp 33144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator