Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntrval2 Structured version   Visualization version   GIF version

Theorem cntrval2 33126
Description: Express the center 𝑍 of a group 𝑀 as the set of fixed points of the conjugation operation . (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
cntrval2.1 𝐵 = (Base‘𝑀)
cntrval2.2 + = (+g𝑀)
cntrval2.3 = (-g𝑀)
cntrval2.4 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥))
cntrval2.5 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntrval2 (𝑀 ∈ Grp → 𝑍 = (𝐵FixPts ))
Distinct variable groups:   𝑥, ,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem cntrval2
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → 𝑀 ∈ Grp)
2 cntrval2.1 . . . . . . . . 9 𝐵 = (Base‘𝑀)
3 cntrval2.3 . . . . . . . . 9 = (-g𝑀)
4 cntrval2.2 . . . . . . . . . 10 + = (+g𝑀)
5 simpr 484 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
6 simplr 768 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → 𝑧𝐵)
72, 4, 1, 5, 6grpcld 18844 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → (𝑝 + 𝑧) ∈ 𝐵)
82, 3, 1, 7, 5grpsubcld 33007 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑝 + 𝑧) 𝑝) ∈ 𝐵)
92, 4grprcan 18870 . . . . . . . 8 ((𝑀 ∈ Grp ∧ (((𝑝 + 𝑧) 𝑝) ∈ 𝐵𝑧𝐵𝑝𝐵)) → ((((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝) ↔ ((𝑝 + 𝑧) 𝑝) = 𝑧))
101, 8, 6, 5, 9syl13anc 1374 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝) ↔ ((𝑝 + 𝑧) 𝑝) = 𝑧))
112, 4, 3grpnpcan 18929 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ (𝑝 + 𝑧) ∈ 𝐵𝑝𝐵) → (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑝 + 𝑧))
121, 7, 5, 11syl3anc 1373 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑝 + 𝑧))
1312eqeq2d 2740 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑧 + 𝑝) = (((𝑝 + 𝑧) 𝑝) + 𝑝) ↔ (𝑧 + 𝑝) = (𝑝 + 𝑧)))
14 eqcom 2736 . . . . . . . 8 ((𝑧 + 𝑝) = (((𝑝 + 𝑧) 𝑝) + 𝑝) ↔ (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝))
1513, 14bitr3di 286 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑧 + 𝑝) = (𝑝 + 𝑧) ↔ (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝)))
16 cntrval2.4 . . . . . . . . . 10 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥))
1716a1i 11 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥)))
18 simprl 770 . . . . . . . . . . 11 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → 𝑥 = 𝑝)
19 simprr 772 . . . . . . . . . . 11 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → 𝑦 = 𝑧)
2018, 19oveq12d 7371 . . . . . . . . . 10 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → (𝑥 + 𝑦) = (𝑝 + 𝑧))
2120, 18oveq12d 7371 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → ((𝑥 + 𝑦) 𝑥) = ((𝑝 + 𝑧) 𝑝))
22 ovexd 7388 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑝 + 𝑧) 𝑝) ∈ V)
2317, 21, 5, 6, 22ovmpod 7505 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → (𝑝 𝑧) = ((𝑝 + 𝑧) 𝑝))
2423eqeq1d 2731 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑝 𝑧) = 𝑧 ↔ ((𝑝 + 𝑧) 𝑝) = 𝑧))
2510, 15, 243bitr4d 311 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑧 + 𝑝) = (𝑝 + 𝑧) ↔ (𝑝 𝑧) = 𝑧))
2625ralbidva 3150 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑧𝐵) → (∀𝑝𝐵 (𝑧 + 𝑝) = (𝑝 + 𝑧) ↔ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧))
2726pm5.32da 579 . . . 4 (𝑀 ∈ Grp → ((𝑧𝐵 ∧ ∀𝑝𝐵 (𝑧 + 𝑝) = (𝑝 + 𝑧)) ↔ (𝑧𝐵 ∧ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧)))
28 cntrval2.5 . . . . 5 𝑍 = (Cntr‘𝑀)
292, 4, 28elcntr 19227 . . . 4 (𝑧𝑍 ↔ (𝑧𝐵 ∧ ∀𝑝𝐵 (𝑧 + 𝑝) = (𝑝 + 𝑧)))
30 rabid 3418 . . . 4 (𝑧 ∈ {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧} ↔ (𝑧𝐵 ∧ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧))
3127, 29, 303bitr4g 314 . . 3 (𝑀 ∈ Grp → (𝑧𝑍𝑧 ∈ {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧}))
322, 4, 3, 16conjga 33125 . . . . 5 (𝑀 ∈ Grp → ∈ (𝑀 GrpAct 𝐵))
332, 32fxpgaval 33122 . . . 4 (𝑀 ∈ Grp → (𝐵FixPts ) = {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧})
3433eleq2d 2814 . . 3 (𝑀 ∈ Grp → (𝑧 ∈ (𝐵FixPts ) ↔ 𝑧 ∈ {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧}))
3531, 34bitr4d 282 . 2 (𝑀 ∈ Grp → (𝑧𝑍𝑧 ∈ (𝐵FixPts )))
3635eqrdv 2727 1 (𝑀 ∈ Grp → 𝑍 = (𝐵FixPts ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cfv 6486  (class class class)co 7353  cmpo 7355  Basecbs 17138  +gcplusg 17179  Grpcgrp 18830  -gcsg 18832  Cntrccntr 19213  FixPtscfxp 33118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-ga 19187  df-cntz 19214  df-cntr 19215  df-fxp 33119
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator