Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntrval2 Structured version   Visualization version   GIF version

Theorem cntrval2 33136
Description: Express the center 𝑍 of a group 𝑀 as the set of fixed points of the conjugation operation . (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
cntrval2.1 𝐵 = (Base‘𝑀)
cntrval2.2 + = (+g𝑀)
cntrval2.3 = (-g𝑀)
cntrval2.4 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥))
cntrval2.5 𝑍 = (Cntr‘𝑀)
Assertion
Ref Expression
cntrval2 (𝑀 ∈ Grp → 𝑍 = (𝐵FixPts ))
Distinct variable groups:   𝑥, ,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐵,𝑦   𝑥,𝑀,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem cntrval2
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → 𝑀 ∈ Grp)
2 cntrval2.1 . . . . . . . . 9 𝐵 = (Base‘𝑀)
3 cntrval2.3 . . . . . . . . 9 = (-g𝑀)
4 cntrval2.2 . . . . . . . . . 10 + = (+g𝑀)
5 simpr 484 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → 𝑝𝐵)
6 simplr 768 . . . . . . . . . 10 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → 𝑧𝐵)
72, 4, 1, 5, 6grpcld 18885 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → (𝑝 + 𝑧) ∈ 𝐵)
82, 3, 1, 7, 5grpsubcld 32989 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑝 + 𝑧) 𝑝) ∈ 𝐵)
92, 4grprcan 18911 . . . . . . . 8 ((𝑀 ∈ Grp ∧ (((𝑝 + 𝑧) 𝑝) ∈ 𝐵𝑧𝐵𝑝𝐵)) → ((((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝) ↔ ((𝑝 + 𝑧) 𝑝) = 𝑧))
101, 8, 6, 5, 9syl13anc 1374 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝) ↔ ((𝑝 + 𝑧) 𝑝) = 𝑧))
112, 4, 3grpnpcan 18970 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ (𝑝 + 𝑧) ∈ 𝐵𝑝𝐵) → (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑝 + 𝑧))
121, 7, 5, 11syl3anc 1373 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑝 + 𝑧))
1312eqeq2d 2741 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑧 + 𝑝) = (((𝑝 + 𝑧) 𝑝) + 𝑝) ↔ (𝑧 + 𝑝) = (𝑝 + 𝑧)))
14 eqcom 2737 . . . . . . . 8 ((𝑧 + 𝑝) = (((𝑝 + 𝑧) 𝑝) + 𝑝) ↔ (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝))
1513, 14bitr3di 286 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑧 + 𝑝) = (𝑝 + 𝑧) ↔ (((𝑝 + 𝑧) 𝑝) + 𝑝) = (𝑧 + 𝑝)))
16 cntrval2.4 . . . . . . . . . 10 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥))
1716a1i 11 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥 + 𝑦) 𝑥)))
18 simprl 770 . . . . . . . . . . 11 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → 𝑥 = 𝑝)
19 simprr 772 . . . . . . . . . . 11 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → 𝑦 = 𝑧)
2018, 19oveq12d 7412 . . . . . . . . . 10 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → (𝑥 + 𝑦) = (𝑝 + 𝑧))
2120, 18oveq12d 7412 . . . . . . . . 9 ((((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) ∧ (𝑥 = 𝑝𝑦 = 𝑧)) → ((𝑥 + 𝑦) 𝑥) = ((𝑝 + 𝑧) 𝑝))
22 ovexd 7429 . . . . . . . . 9 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑝 + 𝑧) 𝑝) ∈ V)
2317, 21, 5, 6, 22ovmpod 7548 . . . . . . . 8 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → (𝑝 𝑧) = ((𝑝 + 𝑧) 𝑝))
2423eqeq1d 2732 . . . . . . 7 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑝 𝑧) = 𝑧 ↔ ((𝑝 + 𝑧) 𝑝) = 𝑧))
2510, 15, 243bitr4d 311 . . . . . 6 (((𝑀 ∈ Grp ∧ 𝑧𝐵) ∧ 𝑝𝐵) → ((𝑧 + 𝑝) = (𝑝 + 𝑧) ↔ (𝑝 𝑧) = 𝑧))
2625ralbidva 3156 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑧𝐵) → (∀𝑝𝐵 (𝑧 + 𝑝) = (𝑝 + 𝑧) ↔ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧))
2726pm5.32da 579 . . . 4 (𝑀 ∈ Grp → ((𝑧𝐵 ∧ ∀𝑝𝐵 (𝑧 + 𝑝) = (𝑝 + 𝑧)) ↔ (𝑧𝐵 ∧ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧)))
28 cntrval2.5 . . . . 5 𝑍 = (Cntr‘𝑀)
292, 4, 28elcntr 19268 . . . 4 (𝑧𝑍 ↔ (𝑧𝐵 ∧ ∀𝑝𝐵 (𝑧 + 𝑝) = (𝑝 + 𝑧)))
30 rabid 3433 . . . 4 (𝑧 ∈ {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧} ↔ (𝑧𝐵 ∧ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧))
3127, 29, 303bitr4g 314 . . 3 (𝑀 ∈ Grp → (𝑧𝑍𝑧 ∈ {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧}))
322, 4, 3, 16conjga 33135 . . . . 5 (𝑀 ∈ Grp → ∈ (𝑀 GrpAct 𝐵))
332, 32fxpgaval 33132 . . . 4 (𝑀 ∈ Grp → (𝐵FixPts ) = {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧})
3433eleq2d 2815 . . 3 (𝑀 ∈ Grp → (𝑧 ∈ (𝐵FixPts ) ↔ 𝑧 ∈ {𝑧𝐵 ∣ ∀𝑝𝐵 (𝑝 𝑧) = 𝑧}))
3531, 34bitr4d 282 . 2 (𝑀 ∈ Grp → (𝑧𝑍𝑧 ∈ (𝐵FixPts )))
3635eqrdv 2728 1 (𝑀 ∈ Grp → 𝑍 = (𝐵FixPts ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3046  {crab 3411  Vcvv 3455  cfv 6519  (class class class)co 7394  cmpo 7396  Basecbs 17185  +gcplusg 17226  Grpcgrp 18871  -gcsg 18873  Cntrccntr 19254  FixPtscfxp 33128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-map 8805  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-ga 19228  df-cntz 19255  df-cntr 19256  df-fxp 33129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator