MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gastacos Structured version   Visualization version   GIF version

Theorem gastacos 18916
Description: Write the coset relation for the stabilizer subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta.r = (𝐺 ~QG 𝐻)
Assertion
Ref Expression
gastacos ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ (𝐵 𝐴) = (𝐶 𝐴)))
Distinct variable groups:   𝑢,   𝑢,𝐴   𝑢,𝐺   𝑢,𝐵   𝑢,𝑋   𝑢,𝐶
Allowed substitution hints:   (𝑢)   𝐻(𝑢)   𝑌(𝑢)

Proof of Theorem gastacos
StepHypRef Expression
1 gasta.1 . . . . . . 7 𝑋 = (Base‘𝐺)
2 gasta.2 . . . . . . 7 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
31, 2gastacl 18915 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
43adantr 481 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐻 ∈ (SubGrp‘𝐺))
5 subgrcl 18760 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 17 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐺 ∈ Grp)
71subgss 18756 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
84, 7syl 17 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐻𝑋)
9 eqid 2738 . . . . 5 (invg𝐺) = (invg𝐺)
10 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
11 orbsta.r . . . . 5 = (𝐺 ~QG 𝐻)
121, 9, 10, 11eqgval 18805 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻𝑋) → (𝐵 𝐶 ↔ (𝐵𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
136, 8, 12syl2anc 584 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ (𝐵𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
14 df-3an 1088 . . 3 ((𝐵𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻) ↔ ((𝐵𝑋𝐶𝑋) ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻))
1513, 14bitrdi 287 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ ((𝐵𝑋𝐶𝑋) ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
16 simpr 485 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵𝑋𝐶𝑋))
1716biantrurd 533 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((𝐵𝑋𝐶𝑋) ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
18 simpll 764 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ∈ (𝐺 GrpAct 𝑌))
19 simprl 768 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
201, 9grpinvcl 18627 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → ((invg𝐺)‘𝐵) ∈ 𝑋)
216, 19, 20syl2anc 584 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((invg𝐺)‘𝐵) ∈ 𝑋)
22 simprr 770 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
23 simplr 766 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐴𝑌)
241, 10gaass 18903 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐵) ∈ 𝑋𝐶𝑋𝐴𝑌)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = (((invg𝐺)‘𝐵) (𝐶 𝐴)))
2518, 21, 22, 23, 24syl13anc 1371 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = (((invg𝐺)‘𝐵) (𝐶 𝐴)))
2625eqeq1d 2740 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝐵) (𝐶 𝐴)) = 𝐴))
271, 10grpcl 18585 . . . . 5 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐵) ∈ 𝑋𝐶𝑋) → (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋)
286, 21, 22, 27syl3anc 1370 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋)
29 oveq1 7282 . . . . . . 7 (𝑢 = (((invg𝐺)‘𝐵)(+g𝐺)𝐶) → (𝑢 𝐴) = ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴))
3029eqeq1d 2740 . . . . . 6 (𝑢 = (((invg𝐺)‘𝐵)(+g𝐺)𝐶) → ((𝑢 𝐴) = 𝐴 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
3130, 2elrab2 3627 . . . . 5 ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋 ∧ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
3231baib 536 . . . 4 ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋 → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
3328, 32syl 17 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
341gaf 18901 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
3518, 34syl 17 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → :(𝑋 × 𝑌)⟶𝑌)
3635, 22, 23fovrnd 7444 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐶 𝐴) ∈ 𝑌)
371, 9gacan 18911 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐵𝑋𝐴𝑌 ∧ (𝐶 𝐴) ∈ 𝑌)) → ((𝐵 𝐴) = (𝐶 𝐴) ↔ (((invg𝐺)‘𝐵) (𝐶 𝐴)) = 𝐴))
3818, 19, 23, 36, 37syl13anc 1371 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((𝐵 𝐴) = (𝐶 𝐴) ↔ (((invg𝐺)‘𝐵) (𝐶 𝐴)) = 𝐴))
3926, 33, 383bitr4d 311 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ (𝐵 𝐴) = (𝐶 𝐴)))
4015, 17, 393bitr2d 307 1 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ (𝐵 𝐴) = (𝐶 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  wss 3887   class class class wbr 5074   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  invgcminusg 18578  SubGrpcsubg 18749   ~QG cqg 18751   GrpAct cga 18895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-subg 18752  df-eqg 18754  df-ga 18896
This theorem is referenced by:  orbstafun  18917  orbsta  18919
  Copyright terms: Public domain W3C validator