MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gastacos Structured version   Visualization version   GIF version

Theorem gastacos 18831
Description: Write the coset relation for the stabilizer subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
gasta.1 𝑋 = (Base‘𝐺)
gasta.2 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
orbsta.r = (𝐺 ~QG 𝐻)
Assertion
Ref Expression
gastacos ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ (𝐵 𝐴) = (𝐶 𝐴)))
Distinct variable groups:   𝑢,   𝑢,𝐴   𝑢,𝐺   𝑢,𝐵   𝑢,𝑋   𝑢,𝐶
Allowed substitution hints:   (𝑢)   𝐻(𝑢)   𝑌(𝑢)

Proof of Theorem gastacos
StepHypRef Expression
1 gasta.1 . . . . . . 7 𝑋 = (Base‘𝐺)
2 gasta.2 . . . . . . 7 𝐻 = {𝑢𝑋 ∣ (𝑢 𝐴) = 𝐴}
31, 2gastacl 18830 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) → 𝐻 ∈ (SubGrp‘𝐺))
43adantr 480 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐻 ∈ (SubGrp‘𝐺))
5 subgrcl 18675 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
64, 5syl 17 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐺 ∈ Grp)
71subgss 18671 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → 𝐻𝑋)
84, 7syl 17 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐻𝑋)
9 eqid 2738 . . . . 5 (invg𝐺) = (invg𝐺)
10 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
11 orbsta.r . . . . 5 = (𝐺 ~QG 𝐻)
121, 9, 10, 11eqgval 18720 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻𝑋) → (𝐵 𝐶 ↔ (𝐵𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
136, 8, 12syl2anc 583 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ (𝐵𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
14 df-3an 1087 . . 3 ((𝐵𝑋𝐶𝑋 ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻) ↔ ((𝐵𝑋𝐶𝑋) ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻))
1513, 14bitrdi 286 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ ((𝐵𝑋𝐶𝑋) ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
16 simpr 484 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵𝑋𝐶𝑋))
1716biantrurd 532 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((𝐵𝑋𝐶𝑋) ∧ (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻)))
18 simpll 763 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ∈ (𝐺 GrpAct 𝑌))
19 simprl 767 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
201, 9grpinvcl 18542 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → ((invg𝐺)‘𝐵) ∈ 𝑋)
216, 19, 20syl2anc 583 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((invg𝐺)‘𝐵) ∈ 𝑋)
22 simprr 769 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
23 simplr 765 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → 𝐴𝑌)
241, 10gaass 18818 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ (((invg𝐺)‘𝐵) ∈ 𝑋𝐶𝑋𝐴𝑌)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = (((invg𝐺)‘𝐵) (𝐶 𝐴)))
2518, 21, 22, 23, 24syl13anc 1370 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = (((invg𝐺)‘𝐵) (𝐶 𝐴)))
2625eqeq1d 2740 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴 ↔ (((invg𝐺)‘𝐵) (𝐶 𝐴)) = 𝐴))
271, 10grpcl 18500 . . . . 5 ((𝐺 ∈ Grp ∧ ((invg𝐺)‘𝐵) ∈ 𝑋𝐶𝑋) → (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋)
286, 21, 22, 27syl3anc 1369 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋)
29 oveq1 7262 . . . . . . 7 (𝑢 = (((invg𝐺)‘𝐵)(+g𝐺)𝐶) → (𝑢 𝐴) = ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴))
3029eqeq1d 2740 . . . . . 6 (𝑢 = (((invg𝐺)‘𝐵)(+g𝐺)𝐶) → ((𝑢 𝐴) = 𝐴 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
3130, 2elrab2 3620 . . . . 5 ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋 ∧ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
3231baib 535 . . . 4 ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝑋 → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
3328, 32syl 17 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) 𝐴) = 𝐴))
341gaf 18816 . . . . . 6 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
3518, 34syl 17 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → :(𝑋 × 𝑌)⟶𝑌)
3635, 22, 23fovrnd 7422 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐶 𝐴) ∈ 𝑌)
371, 9gacan 18826 . . . 4 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝐵𝑋𝐴𝑌 ∧ (𝐶 𝐴) ∈ 𝑌)) → ((𝐵 𝐴) = (𝐶 𝐴) ↔ (((invg𝐺)‘𝐵) (𝐶 𝐴)) = 𝐴))
3818, 19, 23, 36, 37syl13anc 1370 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((𝐵 𝐴) = (𝐶 𝐴) ↔ (((invg𝐺)‘𝐵) (𝐶 𝐴)) = 𝐴))
3926, 33, 383bitr4d 310 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → ((((invg𝐺)‘𝐵)(+g𝐺)𝐶) ∈ 𝐻 ↔ (𝐵 𝐴) = (𝐶 𝐴)))
4015, 17, 393bitr2d 306 1 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴𝑌) ∧ (𝐵𝑋𝐶𝑋)) → (𝐵 𝐶 ↔ (𝐵 𝐴) = (𝐶 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  wss 3883   class class class wbr 5070   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  invgcminusg 18493  SubGrpcsubg 18664   ~QG cqg 18666   GrpAct cga 18810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-eqg 18669  df-ga 18811
This theorem is referenced by:  orbstafun  18832  orbsta  18834
  Copyright terms: Public domain W3C validator