Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricsym Structured version   Visualization version   GIF version

Theorem gricsym 48045
Description: Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 3-May-2025.)
Assertion
Ref Expression
gricsym (𝐺 ∈ UHGraph → (𝐺𝑔𝑟 𝑆𝑆𝑔𝑟 𝐺))

Proof of Theorem gricsym
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgric 48036 . . 3 (𝐺𝑔𝑟 𝑆 ↔ (𝐺 GraphIso 𝑆) ≠ ∅)
2 n0 4302 . . 3 ((𝐺 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆))
31, 2bitri 275 . 2 (𝐺𝑔𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆))
4 grimcnv 48012 . . . 4 (𝐺 ∈ UHGraph → (𝑓 ∈ (𝐺 GraphIso 𝑆) → 𝑓 ∈ (𝑆 GraphIso 𝐺)))
5 brgrici 48037 . . . 4 (𝑓 ∈ (𝑆 GraphIso 𝐺) → 𝑆𝑔𝑟 𝐺)
64, 5syl6 35 . . 3 (𝐺 ∈ UHGraph → (𝑓 ∈ (𝐺 GraphIso 𝑆) → 𝑆𝑔𝑟 𝐺))
76exlimdv 1934 . 2 (𝐺 ∈ UHGraph → (∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆) → 𝑆𝑔𝑟 𝐺))
83, 7biimtrid 242 1 (𝐺 ∈ UHGraph → (𝐺𝑔𝑟 𝑆𝑆𝑔𝑟 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2113  wne 2929  c0 4282   class class class wbr 5093  ccnv 5618  (class class class)co 7352  UHGraphcuhgr 29036   GraphIso cgrim 47999  𝑔𝑟 cgric 48000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-1o 8391  df-map 8758  df-uhgr 29038  df-grim 48002  df-gric 48005
This theorem is referenced by:  gricsymb  48046  gricer  48048  grlicsym  48137  clnbgr3stgrgrlim  48143  clnbgr3stgrgrlic  48144  usgrexmpl12ngric  48162
  Copyright terms: Public domain W3C validator