| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gricsym | Structured version Visualization version GIF version | ||
| Description: Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 3-May-2025.) |
| Ref | Expression |
|---|---|
| gricsym | ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑔𝑟 𝑆 → 𝑆 ≃𝑔𝑟 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric 48036 | . . 3 ⊢ (𝐺 ≃𝑔𝑟 𝑆 ↔ (𝐺 GraphIso 𝑆) ≠ ∅) | |
| 2 | n0 4302 | . . 3 ⊢ ((𝐺 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐺 ≃𝑔𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆)) |
| 4 | grimcnv 48012 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝑓 ∈ (𝐺 GraphIso 𝑆) → ◡𝑓 ∈ (𝑆 GraphIso 𝐺))) | |
| 5 | brgrici 48037 | . . . 4 ⊢ (◡𝑓 ∈ (𝑆 GraphIso 𝐺) → 𝑆 ≃𝑔𝑟 𝐺) | |
| 6 | 4, 5 | syl6 35 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝑓 ∈ (𝐺 GraphIso 𝑆) → 𝑆 ≃𝑔𝑟 𝐺)) |
| 7 | 6 | exlimdv 1934 | . 2 ⊢ (𝐺 ∈ UHGraph → (∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆) → 𝑆 ≃𝑔𝑟 𝐺)) |
| 8 | 3, 7 | biimtrid 242 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑔𝑟 𝑆 → 𝑆 ≃𝑔𝑟 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 class class class wbr 5093 ◡ccnv 5618 (class class class)co 7352 UHGraphcuhgr 29036 GraphIso cgrim 47999 ≃𝑔𝑟 cgric 48000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-1o 8391 df-map 8758 df-uhgr 29038 df-grim 48002 df-gric 48005 |
| This theorem is referenced by: gricsymb 48046 gricer 48048 grlicsym 48137 clnbgr3stgrgrlim 48143 clnbgr3stgrgrlic 48144 usgrexmpl12ngric 48162 |
| Copyright terms: Public domain | W3C validator |