| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gricsym | Structured version Visualization version GIF version | ||
| Description: Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 3-May-2025.) |
| Ref | Expression |
|---|---|
| gricsym | ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑔𝑟 𝑆 → 𝑆 ≃𝑔𝑟 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric 47942 | . . 3 ⊢ (𝐺 ≃𝑔𝑟 𝑆 ↔ (𝐺 GraphIso 𝑆) ≠ ∅) | |
| 2 | n0 4303 | . . 3 ⊢ ((𝐺 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐺 ≃𝑔𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆)) |
| 4 | grimcnv 47918 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝑓 ∈ (𝐺 GraphIso 𝑆) → ◡𝑓 ∈ (𝑆 GraphIso 𝐺))) | |
| 5 | brgrici 47943 | . . . 4 ⊢ (◡𝑓 ∈ (𝑆 GraphIso 𝐺) → 𝑆 ≃𝑔𝑟 𝐺) | |
| 6 | 4, 5 | syl6 35 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝑓 ∈ (𝐺 GraphIso 𝑆) → 𝑆 ≃𝑔𝑟 𝐺)) |
| 7 | 6 | exlimdv 1934 | . 2 ⊢ (𝐺 ∈ UHGraph → (∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆) → 𝑆 ≃𝑔𝑟 𝐺)) |
| 8 | 3, 7 | biimtrid 242 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑔𝑟 𝑆 → 𝑆 ≃𝑔𝑟 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4283 class class class wbr 5091 ◡ccnv 5615 (class class class)co 7346 UHGraphcuhgr 29032 GraphIso cgrim 47905 ≃𝑔𝑟 cgric 47906 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-1o 8385 df-map 8752 df-uhgr 29034 df-grim 47908 df-gric 47911 |
| This theorem is referenced by: gricsymb 47952 gricer 47954 grlicsym 48043 clnbgr3stgrgrlim 48049 clnbgr3stgrgrlic 48050 usgrexmpl12ngric 48068 |
| Copyright terms: Public domain | W3C validator |