Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gricsym Structured version   Visualization version   GIF version

Theorem gricsym 47925
Description: Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022.) (Revised by AV, 3-May-2025.)
Assertion
Ref Expression
gricsym (𝐺 ∈ UHGraph → (𝐺𝑔𝑟 𝑆𝑆𝑔𝑟 𝐺))

Proof of Theorem gricsym
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgric 47916 . . 3 (𝐺𝑔𝑟 𝑆 ↔ (𝐺 GraphIso 𝑆) ≠ ∅)
2 n0 4319 . . 3 ((𝐺 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆))
31, 2bitri 275 . 2 (𝐺𝑔𝑟 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆))
4 grimcnv 47892 . . . 4 (𝐺 ∈ UHGraph → (𝑓 ∈ (𝐺 GraphIso 𝑆) → 𝑓 ∈ (𝑆 GraphIso 𝐺)))
5 brgrici 47917 . . . 4 (𝑓 ∈ (𝑆 GraphIso 𝐺) → 𝑆𝑔𝑟 𝐺)
64, 5syl6 35 . . 3 (𝐺 ∈ UHGraph → (𝑓 ∈ (𝐺 GraphIso 𝑆) → 𝑆𝑔𝑟 𝐺))
76exlimdv 1933 . 2 (𝐺 ∈ UHGraph → (∃𝑓 𝑓 ∈ (𝐺 GraphIso 𝑆) → 𝑆𝑔𝑟 𝐺))
83, 7biimtrid 242 1 (𝐺 ∈ UHGraph → (𝐺𝑔𝑟 𝑆𝑆𝑔𝑟 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1779  wcel 2109  wne 2926  c0 4299   class class class wbr 5110  ccnv 5640  (class class class)co 7390  UHGraphcuhgr 28990   GraphIso cgrim 47879  𝑔𝑟 cgric 47880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-map 8804  df-uhgr 28992  df-grim 47882  df-gric 47885
This theorem is referenced by:  gricsymb  47926  gricer  47928  grlicsym  48009  clnbgr3stgrgrlic  48015  usgrexmpl12ngric  48033
  Copyright terms: Public domain W3C validator