| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grictr | Structured version Visualization version GIF version | ||
| Description: Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022.) (Revised by AV, 3-May-2025.) |
| Ref | Expression |
|---|---|
| grictr | ⊢ ((𝑅 ≃𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑔𝑟 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric 47916 | . 2 ⊢ (𝑅 ≃𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅) | |
| 2 | brgric 47916 | . 2 ⊢ (𝑆 ≃𝑔𝑟 𝑇 ↔ (𝑆 GraphIso 𝑇) ≠ ∅) | |
| 3 | n0 4319 | . . 3 ⊢ ((𝑅 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆)) | |
| 4 | n0 4319 | . . 3 ⊢ ((𝑆 GraphIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇)) | |
| 5 | exdistrv 1955 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) ↔ (∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇))) | |
| 6 | grimco 47893 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑆 GraphIso 𝑇) ∧ 𝑔 ∈ (𝑅 GraphIso 𝑆)) → (𝑓 ∘ 𝑔) ∈ (𝑅 GraphIso 𝑇)) | |
| 7 | 6 | ancoms 458 | . . . . . 6 ⊢ ((𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → (𝑓 ∘ 𝑔) ∈ (𝑅 GraphIso 𝑇)) |
| 8 | brgrici 47917 | . . . . . 6 ⊢ ((𝑓 ∘ 𝑔) ∈ (𝑅 GraphIso 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅 ≃𝑔𝑟 𝑇) |
| 10 | 9 | exlimivv 1932 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅 ≃𝑔𝑟 𝑇) |
| 11 | 5, 10 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅 ≃𝑔𝑟 𝑇) |
| 12 | 3, 4, 11 | syl2anb 598 | . 2 ⊢ (((𝑅 GraphIso 𝑆) ≠ ∅ ∧ (𝑆 GraphIso 𝑇) ≠ ∅) → 𝑅 ≃𝑔𝑟 𝑇) |
| 13 | 1, 2, 12 | syl2anb 598 | 1 ⊢ ((𝑅 ≃𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑔𝑟 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 class class class wbr 5110 ∘ ccom 5645 (class class class)co 7390 GraphIso cgrim 47879 ≃𝑔𝑟 cgric 47880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-1o 8437 df-map 8804 df-grim 47882 df-gric 47885 |
| This theorem is referenced by: gricer 47928 grlictr 48011 clnbgr3stgrgrlic 48015 |
| Copyright terms: Public domain | W3C validator |