Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grictr Structured version   Visualization version   GIF version

Theorem grictr 47936
Description: Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022.) (Revised by AV, 3-May-2025.)
Assertion
Ref Expression
grictr ((𝑅𝑔𝑟 𝑆𝑆𝑔𝑟 𝑇) → 𝑅𝑔𝑟 𝑇)

Proof of Theorem grictr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgric 47925 . 2 (𝑅𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅)
2 brgric 47925 . 2 (𝑆𝑔𝑟 𝑇 ↔ (𝑆 GraphIso 𝑇) ≠ ∅)
3 n0 4328 . . 3 ((𝑅 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆))
4 n0 4328 . . 3 ((𝑆 GraphIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇))
5 exdistrv 1955 . . . 4 (∃𝑔𝑓(𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) ↔ (∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇)))
6 grimco 47902 . . . . . . 7 ((𝑓 ∈ (𝑆 GraphIso 𝑇) ∧ 𝑔 ∈ (𝑅 GraphIso 𝑆)) → (𝑓𝑔) ∈ (𝑅 GraphIso 𝑇))
76ancoms 458 . . . . . 6 ((𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → (𝑓𝑔) ∈ (𝑅 GraphIso 𝑇))
8 brgrici 47926 . . . . . 6 ((𝑓𝑔) ∈ (𝑅 GraphIso 𝑇) → 𝑅𝑔𝑟 𝑇)
97, 8syl 17 . . . . 5 ((𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅𝑔𝑟 𝑇)
109exlimivv 1932 . . . 4 (∃𝑔𝑓(𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅𝑔𝑟 𝑇)
115, 10sylbir 235 . . 3 ((∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅𝑔𝑟 𝑇)
123, 4, 11syl2anb 598 . 2 (((𝑅 GraphIso 𝑆) ≠ ∅ ∧ (𝑆 GraphIso 𝑇) ≠ ∅) → 𝑅𝑔𝑟 𝑇)
131, 2, 12syl2anb 598 1 ((𝑅𝑔𝑟 𝑆𝑆𝑔𝑟 𝑇) → 𝑅𝑔𝑟 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2108  wne 2932  c0 4308   class class class wbr 5119  ccom 5658  (class class class)co 7405   GraphIso cgrim 47888  𝑔𝑟 cgric 47889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-1o 8480  df-map 8842  df-grim 47891  df-gric 47894
This theorem is referenced by:  gricer  47937  grlictr  48020  clnbgr3stgrgrlic  48024
  Copyright terms: Public domain W3C validator