| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grictr | Structured version Visualization version GIF version | ||
| Description: Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022.) (Revised by AV, 3-May-2025.) |
| Ref | Expression |
|---|---|
| grictr | ⊢ ((𝑅 ≃𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑔𝑟 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric 47925 | . 2 ⊢ (𝑅 ≃𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅) | |
| 2 | brgric 47925 | . 2 ⊢ (𝑆 ≃𝑔𝑟 𝑇 ↔ (𝑆 GraphIso 𝑇) ≠ ∅) | |
| 3 | n0 4328 | . . 3 ⊢ ((𝑅 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆)) | |
| 4 | n0 4328 | . . 3 ⊢ ((𝑆 GraphIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇)) | |
| 5 | exdistrv 1955 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) ↔ (∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇))) | |
| 6 | grimco 47902 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑆 GraphIso 𝑇) ∧ 𝑔 ∈ (𝑅 GraphIso 𝑆)) → (𝑓 ∘ 𝑔) ∈ (𝑅 GraphIso 𝑇)) | |
| 7 | 6 | ancoms 458 | . . . . . 6 ⊢ ((𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → (𝑓 ∘ 𝑔) ∈ (𝑅 GraphIso 𝑇)) |
| 8 | brgrici 47926 | . . . . . 6 ⊢ ((𝑓 ∘ 𝑔) ∈ (𝑅 GraphIso 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅 ≃𝑔𝑟 𝑇) |
| 10 | 9 | exlimivv 1932 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅 ≃𝑔𝑟 𝑇) |
| 11 | 5, 10 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅 ≃𝑔𝑟 𝑇) |
| 12 | 3, 4, 11 | syl2anb 598 | . 2 ⊢ (((𝑅 GraphIso 𝑆) ≠ ∅ ∧ (𝑆 GraphIso 𝑇) ≠ ∅) → 𝑅 ≃𝑔𝑟 𝑇) |
| 13 | 1, 2, 12 | syl2anb 598 | 1 ⊢ ((𝑅 ≃𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑔𝑟 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∅c0 4308 class class class wbr 5119 ∘ ccom 5658 (class class class)co 7405 GraphIso cgrim 47888 ≃𝑔𝑟 cgric 47889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-1o 8480 df-map 8842 df-grim 47891 df-gric 47894 |
| This theorem is referenced by: gricer 47937 grlictr 48020 clnbgr3stgrgrlic 48024 |
| Copyright terms: Public domain | W3C validator |