![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grictr | Structured version Visualization version GIF version |
Description: Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022.) (Revised by AV, 3-May-2025.) |
Ref | Expression |
---|---|
grictr | ⊢ ((𝑅 ≃𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑔𝑟 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgric 47765 | . 2 ⊢ (𝑅 ≃𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅) | |
2 | brgric 47765 | . 2 ⊢ (𝑆 ≃𝑔𝑟 𝑇 ↔ (𝑆 GraphIso 𝑇) ≠ ∅) | |
3 | n0 4376 | . . 3 ⊢ ((𝑅 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆)) | |
4 | n0 4376 | . . 3 ⊢ ((𝑆 GraphIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇)) | |
5 | exdistrv 1955 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) ↔ (∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇))) | |
6 | grimco 47764 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝑆 GraphIso 𝑇) ∧ 𝑔 ∈ (𝑅 GraphIso 𝑆)) → (𝑓 ∘ 𝑔) ∈ (𝑅 GraphIso 𝑇)) | |
7 | 6 | ancoms 458 | . . . . . 6 ⊢ ((𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → (𝑓 ∘ 𝑔) ∈ (𝑅 GraphIso 𝑇)) |
8 | brgrici 47766 | . . . . . 6 ⊢ ((𝑓 ∘ 𝑔) ∈ (𝑅 GraphIso 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ ((𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅 ≃𝑔𝑟 𝑇) |
10 | 9 | exlimivv 1931 | . . . 4 ⊢ (∃𝑔∃𝑓(𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅 ≃𝑔𝑟 𝑇) |
11 | 5, 10 | sylbir 235 | . . 3 ⊢ ((∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅 ≃𝑔𝑟 𝑇) |
12 | 3, 4, 11 | syl2anb 597 | . 2 ⊢ (((𝑅 GraphIso 𝑆) ≠ ∅ ∧ (𝑆 GraphIso 𝑇) ≠ ∅) → 𝑅 ≃𝑔𝑟 𝑇) |
13 | 1, 2, 12 | syl2anb 597 | 1 ⊢ ((𝑅 ≃𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑔𝑟 𝑇) → 𝑅 ≃𝑔𝑟 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 class class class wbr 5166 ∘ ccom 5704 (class class class)co 7448 GraphIso cgrim 47745 ≃𝑔𝑟 cgric 47746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-1o 8522 df-map 8886 df-grim 47748 df-gric 47751 |
This theorem is referenced by: gricer 47777 grlictr 47832 |
Copyright terms: Public domain | W3C validator |