Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grictr Structured version   Visualization version   GIF version

Theorem grictr 47507
Description: Graph isomorphism is transitive. (Contributed by AV, 5-Dec-2022.) (Revised by AV, 3-May-2025.)
Assertion
Ref Expression
grictr ((𝑅𝑔𝑟 𝑆𝑆𝑔𝑟 𝑇) → 𝑅𝑔𝑟 𝑇)

Proof of Theorem grictr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgric 47496 . 2 (𝑅𝑔𝑟 𝑆 ↔ (𝑅 GraphIso 𝑆) ≠ ∅)
2 brgric 47496 . 2 (𝑆𝑔𝑟 𝑇 ↔ (𝑆 GraphIso 𝑇) ≠ ∅)
3 n0 4346 . . 3 ((𝑅 GraphIso 𝑆) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆))
4 n0 4346 . . 3 ((𝑆 GraphIso 𝑇) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇))
5 exdistrv 1952 . . . 4 (∃𝑔𝑓(𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) ↔ (∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇)))
6 grimco 47495 . . . . . . 7 ((𝑓 ∈ (𝑆 GraphIso 𝑇) ∧ 𝑔 ∈ (𝑅 GraphIso 𝑆)) → (𝑓𝑔) ∈ (𝑅 GraphIso 𝑇))
76ancoms 457 . . . . . 6 ((𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → (𝑓𝑔) ∈ (𝑅 GraphIso 𝑇))
8 brgrici 47497 . . . . . 6 ((𝑓𝑔) ∈ (𝑅 GraphIso 𝑇) → 𝑅𝑔𝑟 𝑇)
97, 8syl 17 . . . . 5 ((𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅𝑔𝑟 𝑇)
109exlimivv 1928 . . . 4 (∃𝑔𝑓(𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅𝑔𝑟 𝑇)
115, 10sylbir 234 . . 3 ((∃𝑔 𝑔 ∈ (𝑅 GraphIso 𝑆) ∧ ∃𝑓 𝑓 ∈ (𝑆 GraphIso 𝑇)) → 𝑅𝑔𝑟 𝑇)
123, 4, 11syl2anb 596 . 2 (((𝑅 GraphIso 𝑆) ≠ ∅ ∧ (𝑆 GraphIso 𝑇) ≠ ∅) → 𝑅𝑔𝑟 𝑇)
131, 2, 12syl2anb 596 1 ((𝑅𝑔𝑟 𝑆𝑆𝑔𝑟 𝑇) → 𝑅𝑔𝑟 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wex 1774  wcel 2099  wne 2930  c0 4322   class class class wbr 5145  ccom 5678  (class class class)co 7416   GraphIso cgrim 47476  𝑔𝑟 cgric 47477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-1o 8488  df-map 8849  df-grim 47479  df-gric 47482
This theorem is referenced by:  gricer  47508  grlictr  47541
  Copyright terms: Public domain W3C validator