MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgaddcomlem Structured version   Visualization version   GIF version

Theorem mulgaddcomlem 18994
Description: Lemma for mulgaddcom 18995. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b 𝐵 = (Base‘𝐺)
mulgaddcom.t · = (.g𝐺)
mulgaddcom.p + = (+g𝐺)
Assertion
Ref Expression
mulgaddcomlem (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))

Proof of Theorem mulgaddcomlem
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → 𝐺 ∈ Grp)
21adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝐺 ∈ Grp)
3 simp3 1138 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → 𝑋𝐵)
43adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝑋𝐵)
5 znegcl 12528 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6 mulgaddcom.b . . . . . . . 8 𝐵 = (Base‘𝐺)
7 mulgaddcom.t . . . . . . . 8 · = (.g𝐺)
86, 7mulgcl 18988 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) ∈ 𝐵)
95, 8syl3an2 1164 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) ∈ 𝐵)
109adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) ∈ 𝐵)
11 eqid 2729 . . . . . . . 8 (invg𝐺) = (invg𝐺)
126, 11grpinvcl 18884 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
13123adant2 1131 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
1413adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘𝑋) ∈ 𝐵)
15 mulgaddcom.p . . . . . 6 + = (+g𝐺)
166, 15grpass 18839 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵 ∧ ((invg𝐺)‘𝑋) ∈ 𝐵)) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))))
172, 4, 10, 14, 16syl13anc 1374 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))))
186, 7, 11mulgneg 18989 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = ((invg𝐺)‘(𝑦 · 𝑋)))
1918adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) = ((invg𝐺)‘(𝑦 · 𝑋)))
2019oveq1d 7368 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋)) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
216, 7mulgcl 18988 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
2221adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑦 · 𝑋) ∈ 𝐵)
236, 15, 11grpinvadd 18915 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
242, 4, 22, 23syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
2519oveq2d 7369 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
266, 15, 11grpinvadd 18915 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
272, 22, 4, 26syl3anc 1373 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
28 fveq2 6826 . . . . . . . 8 (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))))
2928adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))))
3025, 27, 293eqtr2rd 2771 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)))
3120, 24, 303eqtr2d 2770 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋)) = (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)))
3231oveq2d 7369 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))) = (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))))
336, 15, 11grpasscan1 18898 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋))
342, 4, 10, 33syl3anc 1373 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋))
3517, 32, 343eqtrd 2768 . . 3 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (-𝑦 · 𝑋))
3635oveq1d 7368 . 2 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋))
376, 15grpcl 18838 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
381, 3, 9, 37syl3anc 1373 . . . 4 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
3938adantr 480 . . 3 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
406, 15, 11grpasscan2 18899 . . 3 ((𝐺 ∈ Grp ∧ (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵𝑋𝐵) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
412, 39, 4, 40syl3anc 1373 . 2 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
4236, 41eqtr3d 2766 1 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  -cneg 11366  cz 12489  Basecbs 17138  +gcplusg 17179  Grpcgrp 18830  invgcminusg 18831  .gcmg 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-seq 13927  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-mulg 18965
This theorem is referenced by:  mulgaddcom  18995
  Copyright terms: Public domain W3C validator