MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgaddcomlem Structured version   Visualization version   GIF version

Theorem mulgaddcomlem 18822
Description: Lemma for mulgaddcom 18823. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b 𝐵 = (Base‘𝐺)
mulgaddcom.t · = (.g𝐺)
mulgaddcom.p + = (+g𝐺)
Assertion
Ref Expression
mulgaddcomlem (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))

Proof of Theorem mulgaddcomlem
StepHypRef Expression
1 simp1 1135 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → 𝐺 ∈ Grp)
21adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝐺 ∈ Grp)
3 simp3 1137 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → 𝑋𝐵)
43adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝑋𝐵)
5 znegcl 12456 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6 mulgaddcom.b . . . . . . . 8 𝐵 = (Base‘𝐺)
7 mulgaddcom.t . . . . . . . 8 · = (.g𝐺)
86, 7mulgcl 18817 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) ∈ 𝐵)
95, 8syl3an2 1163 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) ∈ 𝐵)
109adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) ∈ 𝐵)
11 eqid 2736 . . . . . . . 8 (invg𝐺) = (invg𝐺)
126, 11grpinvcl 18723 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
13123adant2 1130 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
1413adantr 481 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘𝑋) ∈ 𝐵)
15 mulgaddcom.p . . . . . 6 + = (+g𝐺)
166, 15grpass 18682 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵 ∧ ((invg𝐺)‘𝑋) ∈ 𝐵)) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))))
172, 4, 10, 14, 16syl13anc 1371 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))))
186, 7, 11mulgneg 18818 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = ((invg𝐺)‘(𝑦 · 𝑋)))
1918adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) = ((invg𝐺)‘(𝑦 · 𝑋)))
2019oveq1d 7352 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋)) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
216, 7mulgcl 18817 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
2221adantr 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑦 · 𝑋) ∈ 𝐵)
236, 15, 11grpinvadd 18749 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
242, 4, 22, 23syl3anc 1370 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
2519oveq2d 7353 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
266, 15, 11grpinvadd 18749 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
272, 22, 4, 26syl3anc 1370 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
28 fveq2 6825 . . . . . . . 8 (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))))
2928adantl 482 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))))
3025, 27, 293eqtr2rd 2783 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)))
3120, 24, 303eqtr2d 2782 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋)) = (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)))
3231oveq2d 7353 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))) = (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))))
336, 15, 11grpasscan1 18734 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋))
342, 4, 10, 33syl3anc 1370 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋))
3517, 32, 343eqtrd 2780 . . 3 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (-𝑦 · 𝑋))
3635oveq1d 7352 . 2 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋))
376, 15grpcl 18681 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
381, 3, 9, 37syl3anc 1370 . . . 4 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
3938adantr 481 . . 3 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
406, 15, 11grpasscan2 18735 . . 3 ((𝐺 ∈ Grp ∧ (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵𝑋𝐵) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
412, 39, 4, 40syl3anc 1370 . 2 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
4236, 41eqtr3d 2778 1 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  cfv 6479  (class class class)co 7337  -cneg 11307  cz 12420  Basecbs 17009  +gcplusg 17059  Grpcgrp 18673  invgcminusg 18674  .gcmg 18796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-fz 13341  df-seq 13823  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-grp 18676  df-minusg 18677  df-mulg 18797
This theorem is referenced by:  mulgaddcom  18823
  Copyright terms: Public domain W3C validator