MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgaddcomlem Structured version   Visualization version   GIF version

Theorem mulgaddcomlem 18641
Description: Lemma for mulgaddcom 18642. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.)
Hypotheses
Ref Expression
mulgaddcom.b 𝐵 = (Base‘𝐺)
mulgaddcom.t · = (.g𝐺)
mulgaddcom.p + = (+g𝐺)
Assertion
Ref Expression
mulgaddcomlem (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))

Proof of Theorem mulgaddcomlem
StepHypRef Expression
1 simp1 1134 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → 𝐺 ∈ Grp)
21adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝐺 ∈ Grp)
3 simp3 1136 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → 𝑋𝐵)
43adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → 𝑋𝐵)
5 znegcl 12285 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6 mulgaddcom.b . . . . . . . 8 𝐵 = (Base‘𝐺)
7 mulgaddcom.t . . . . . . . 8 · = (.g𝐺)
86, 7mulgcl 18636 . . . . . . 7 ((𝐺 ∈ Grp ∧ -𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) ∈ 𝐵)
95, 8syl3an2 1162 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) ∈ 𝐵)
109adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) ∈ 𝐵)
11 eqid 2738 . . . . . . . 8 (invg𝐺) = (invg𝐺)
126, 11grpinvcl 18542 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
13123adant2 1129 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → ((invg𝐺)‘𝑋) ∈ 𝐵)
1413adantr 480 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘𝑋) ∈ 𝐵)
15 mulgaddcom.p . . . . . 6 + = (+g𝐺)
166, 15grpass 18501 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵 ∧ ((invg𝐺)‘𝑋) ∈ 𝐵)) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))))
172, 4, 10, 14, 16syl13anc 1370 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))))
186, 7, 11mulgneg 18637 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (-𝑦 · 𝑋) = ((invg𝐺)‘(𝑦 · 𝑋)))
1918adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (-𝑦 · 𝑋) = ((invg𝐺)‘(𝑦 · 𝑋)))
2019oveq1d 7270 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋)) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
216, 7mulgcl 18636 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑦 · 𝑋) ∈ 𝐵)
2221adantr 480 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑦 · 𝑋) ∈ 𝐵)
236, 15, 11grpinvadd 18568 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑦 · 𝑋) ∈ 𝐵) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
242, 4, 22, 23syl3anc 1369 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘(𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)))
2519oveq2d 7271 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
266, 15, 11grpinvadd 18568 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑦 · 𝑋) ∈ 𝐵𝑋𝐵) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
272, 22, 4, 26syl3anc 1369 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = (((invg𝐺)‘𝑋) + ((invg𝐺)‘(𝑦 · 𝑋))))
28 fveq2 6756 . . . . . . . 8 (((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋)) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))))
2928adantl 481 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘((𝑦 · 𝑋) + 𝑋)) = ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))))
3025, 27, 293eqtr2rd 2785 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((invg𝐺)‘(𝑋 + (𝑦 · 𝑋))) = (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)))
3120, 24, 303eqtr2d 2784 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋)) = (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋)))
3231oveq2d 7271 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + ((-𝑦 · 𝑋) + ((invg𝐺)‘𝑋))) = (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))))
336, 15, 11grpasscan1 18553 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋))
342, 4, 10, 33syl3anc 1369 . . . 4 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (((invg𝐺)‘𝑋) + (-𝑦 · 𝑋))) = (-𝑦 · 𝑋))
3517, 32, 343eqtrd 2782 . . 3 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) = (-𝑦 · 𝑋))
3635oveq1d 7270 . 2 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = ((-𝑦 · 𝑋) + 𝑋))
376, 15grpcl 18500 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝐵 ∧ (-𝑦 · 𝑋) ∈ 𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
381, 3, 9, 37syl3anc 1369 . . . 4 ((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
3938adantr 480 . . 3 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵)
406, 15, 11grpasscan2 18554 . . 3 ((𝐺 ∈ Grp ∧ (𝑋 + (-𝑦 · 𝑋)) ∈ 𝐵𝑋𝐵) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
412, 39, 4, 40syl3anc 1369 . 2 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → (((𝑋 + (-𝑦 · 𝑋)) + ((invg𝐺)‘𝑋)) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
4236, 41eqtr3d 2780 1 (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  -cneg 11136  cz 12249  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  invgcminusg 18493  .gcmg 18615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mulg 18616
This theorem is referenced by:  mulgaddcom  18642
  Copyright terms: Public domain W3C validator