![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpasscan1 | Structured version Visualization version GIF version |
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.) |
Ref | Expression |
---|---|
grplcan.b | ⊢ 𝐵 = (Base‘𝐺) |
grplcan.p | ⊢ + = (+g‘𝐺) |
grpasscan1.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpasscan1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑁‘𝑋) + 𝑌)) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplcan.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grplcan.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | eqid 2733 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | grpasscan1.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
5 | 1, 2, 3, 4 | grprinv 18806 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = (0g‘𝐺)) |
6 | 5 | 3adant3 1133 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = (0g‘𝐺)) |
7 | 6 | oveq1d 7373 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = ((0g‘𝐺) + 𝑌)) |
8 | 1, 4 | grpinvcl 18803 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
9 | 1, 2 | grpass 18762 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))) |
10 | 9 | 3exp2 1355 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ((𝑁‘𝑋) ∈ 𝐵 → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌)))))) |
11 | 10 | imp 408 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) ∈ 𝐵 → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))))) |
12 | 8, 11 | mpd 15 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌)))) |
13 | 12 | 3impia 1118 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))) |
14 | 1, 2, 3 | grplid 18785 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺) + 𝑌) = 𝑌) |
15 | 14 | 3adant2 1132 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺) + 𝑌) = 𝑌) |
16 | 7, 13, 15 | 3eqtr3d 2781 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑁‘𝑋) + 𝑌)) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ‘cfv 6497 (class class class)co 7358 Basecbs 17088 +gcplusg 17138 0gc0g 17326 Grpcgrp 18753 invgcminusg 18754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-fv 6505 df-riota 7314 df-ov 7361 df-0g 17328 df-mgm 18502 df-sgrp 18551 df-mnd 18562 df-grp 18756 df-minusg 18757 |
This theorem is referenced by: mulgaddcomlem 18904 grplsmid 32233 nsgqusf1olem3 32241 ghmquskerlem1 32243 |
Copyright terms: Public domain | W3C validator |