![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpasscan1 | Structured version Visualization version GIF version |
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.) |
Ref | Expression |
---|---|
grplcan.b | ⊢ 𝐵 = (Base‘𝐺) |
grplcan.p | ⊢ + = (+g‘𝐺) |
grpasscan1.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpasscan1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑁‘𝑋) + 𝑌)) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplcan.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grplcan.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | eqid 2732 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | grpasscan1.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
5 | 1, 2, 3, 4 | grprinv 18871 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = (0g‘𝐺)) |
6 | 5 | 3adant3 1132 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = (0g‘𝐺)) |
7 | 6 | oveq1d 7420 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = ((0g‘𝐺) + 𝑌)) |
8 | 1, 4 | grpinvcl 18868 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
9 | 1, 2 | grpass 18824 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))) |
10 | 9 | 3exp2 1354 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ((𝑁‘𝑋) ∈ 𝐵 → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌)))))) |
11 | 10 | imp 407 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) ∈ 𝐵 → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))))) |
12 | 8, 11 | mpd 15 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌)))) |
13 | 12 | 3impia 1117 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))) |
14 | 1, 2, 3 | grplid 18848 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺) + 𝑌) = 𝑌) |
15 | 14 | 3adant2 1131 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺) + 𝑌) = 𝑌) |
16 | 7, 13, 15 | 3eqtr3d 2780 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑁‘𝑋) + 𝑌)) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 0gc0g 17381 Grpcgrp 18815 invgcminusg 18816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-riota 7361 df-ov 7408 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 |
This theorem is referenced by: mulgaddcomlem 18971 grplsmid 32502 nsgqusf1olem3 32514 ghmquskerlem1 32516 qsdrnglem2 32598 |
Copyright terms: Public domain | W3C validator |