MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpasscan1 Structured version   Visualization version   GIF version

Theorem grpasscan1 18638
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b 𝐵 = (Base‘𝐺)
grplcan.p + = (+g𝐺)
grpasscan1.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpasscan1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑁𝑋) + 𝑌)) = 𝑌)

Proof of Theorem grpasscan1
StepHypRef Expression
1 grplcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grplcan.p . . . . 5 + = (+g𝐺)
3 eqid 2738 . . . . 5 (0g𝐺) = (0g𝐺)
4 grpasscan1.n . . . . 5 𝑁 = (invg𝐺)
51, 2, 3, 4grprinv 18629 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
653adant3 1131 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
76oveq1d 7290 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑋)) + 𝑌) = ((0g𝐺) + 𝑌))
81, 4grpinvcl 18627 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
91, 2grpass 18586 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵)) → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌)))
1093exp2 1353 . . . . 5 (𝐺 ∈ Grp → (𝑋𝐵 → ((𝑁𝑋) ∈ 𝐵 → (𝑌𝐵 → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌))))))
1110imp 407 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) ∈ 𝐵 → (𝑌𝐵 → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌)))))
128, 11mpd 15 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑌𝐵 → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌))))
13123impia 1116 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌)))
141, 2, 3grplid 18609 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
15143adant2 1130 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
167, 13, 153eqtr3d 2786 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑁𝑋) + 𝑌)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  invgcminusg 18578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581
This theorem is referenced by:  mulgaddcomlem  18726  grplsmid  31592  nsgqusf1olem3  31600
  Copyright terms: Public domain W3C validator