MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpasscan1 Structured version   Visualization version   GIF version

Theorem grpasscan1 18914
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
grplcan.b 𝐵 = (Base‘𝐺)
grplcan.p + = (+g𝐺)
grpasscan1.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpasscan1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑁𝑋) + 𝑌)) = 𝑌)

Proof of Theorem grpasscan1
StepHypRef Expression
1 grplcan.b . . . . 5 𝐵 = (Base‘𝐺)
2 grplcan.p . . . . 5 + = (+g𝐺)
3 eqid 2731 . . . . 5 (0g𝐺) = (0g𝐺)
4 grpasscan1.n . . . . 5 𝑁 = (invg𝐺)
51, 2, 3, 4grprinv 18903 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
653adant3 1132 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑁𝑋)) = (0g𝐺))
76oveq1d 7361 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑋)) + 𝑌) = ((0g𝐺) + 𝑌))
81, 4grpinvcl 18900 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
91, 2grpass 18855 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵𝑌𝐵)) → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌)))
1093exp2 1355 . . . . 5 (𝐺 ∈ Grp → (𝑋𝐵 → ((𝑁𝑋) ∈ 𝐵 → (𝑌𝐵 → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌))))))
1110imp 406 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) ∈ 𝐵 → (𝑌𝐵 → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌)))))
128, 11mpd 15 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑌𝐵 → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌))))
13123impia 1117 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + (𝑁𝑋)) + 𝑌) = (𝑋 + ((𝑁𝑋) + 𝑌)))
141, 2, 3grplid 18880 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
15143adant2 1131 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((0g𝐺) + 𝑌) = 𝑌)
167, 13, 153eqtr3d 2774 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + ((𝑁𝑋) + 𝑌)) = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846  invgcminusg 18847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850
This theorem is referenced by:  mulgaddcomlem  19010  ghmqusnsglem1  19193  ghmquskerlem1  19196  grplsmid  33367  nsgqusf1olem3  33378  qsdrnglem2  33459
  Copyright terms: Public domain W3C validator