Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpasscan1 | Structured version Visualization version GIF version |
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 30-Aug-2021.) |
Ref | Expression |
---|---|
grplcan.b | ⊢ 𝐵 = (Base‘𝐺) |
grplcan.p | ⊢ + = (+g‘𝐺) |
grpasscan1.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grpasscan1 | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑁‘𝑋) + 𝑌)) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grplcan.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grplcan.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | eqid 2737 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
4 | grpasscan1.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
5 | 1, 2, 3, 4 | grprinv 18417 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = (0g‘𝐺)) |
6 | 5 | 3adant3 1134 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + (𝑁‘𝑋)) = (0g‘𝐺)) |
7 | 6 | oveq1d 7228 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = ((0g‘𝐺) + 𝑌)) |
8 | 1, 4 | grpinvcl 18415 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
9 | 1, 2 | grpass 18374 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))) |
10 | 9 | 3exp2 1356 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝑋 ∈ 𝐵 → ((𝑁‘𝑋) ∈ 𝐵 → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌)))))) |
11 | 10 | imp 410 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) ∈ 𝐵 → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))))) |
12 | 8, 11 | mpd 15 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑌 ∈ 𝐵 → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌)))) |
13 | 12 | 3impia 1119 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + (𝑁‘𝑋)) + 𝑌) = (𝑋 + ((𝑁‘𝑋) + 𝑌))) |
14 | 1, 2, 3 | grplid 18397 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺) + 𝑌) = 𝑌) |
15 | 14 | 3adant2 1133 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((0g‘𝐺) + 𝑌) = 𝑌) |
16 | 7, 13, 15 | 3eqtr3d 2785 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + ((𝑁‘𝑋) + 𝑌)) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 0gc0g 16944 Grpcgrp 18365 invgcminusg 18366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-fv 6388 df-riota 7170 df-ov 7216 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 |
This theorem is referenced by: mulgaddcomlem 18514 grplsmid 31306 nsgqusf1olem3 31314 |
Copyright terms: Public domain | W3C validator |