![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evladdval | Structured version Visualization version GIF version |
Description: Polynomial evaluation builder for addition. (Contributed by SN, 9-Feb-2025.) |
Ref | Expression |
---|---|
evladdval.q | ⊢ 𝑄 = (𝐼 eval 𝑆) |
evladdval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑆) |
evladdval.k | ⊢ 𝐾 = (Base‘𝑆) |
evladdval.b | ⊢ 𝐵 = (Base‘𝑃) |
evladdval.g | ⊢ ✚ = (+g‘𝑃) |
evladdval.f | ⊢ + = (+g‘𝑆) |
evladdval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
evladdval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evladdval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
evladdval.m | ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) |
evladdval.n | ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) |
Ref | Expression |
---|---|
evladdval | ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evladdval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
2 | evladdval.g | . . 3 ⊢ ✚ = (+g‘𝑃) | |
3 | evladdval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
4 | evladdval.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
5 | evladdval.q | . . . . . . 7 ⊢ 𝑄 = (𝐼 eval 𝑆) | |
6 | evladdval.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
7 | evladdval.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑆) | |
8 | eqid 2726 | . . . . . . 7 ⊢ (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
9 | 5, 6, 7, 8 | evlrhm 22001 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing) → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
10 | 3, 4, 9 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
11 | rhmghm 20386 | . . . . 5 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
13 | ghmgrp1 19143 | . . . 4 ⊢ (𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑃 ∈ Grp) | |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
15 | evladdval.m | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) | |
16 | 15 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
17 | evladdval.n | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) | |
18 | 17 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
19 | 1, 2, 14, 16, 18 | grpcld 18877 | . 2 ⊢ (𝜑 → (𝑀 ✚ 𝑁) ∈ 𝐵) |
20 | eqid 2726 | . . . . . . 7 ⊢ (+g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (+g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
21 | 1, 2, 20 | ghmlin 19146 | . . . . . 6 ⊢ ((𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼))) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
22 | 12, 16, 18, 21 | syl3anc 1368 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
23 | eqid 2726 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
24 | ovexd 7440 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | |
25 | 1, 23 | rhmf 20387 | . . . . . . . 8 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
26 | 10, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
27 | 26, 16 | ffvelcdmd 7081 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
28 | 26, 18 | ffvelcdmd 7081 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑁) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
29 | evladdval.f | . . . . . 6 ⊢ + = (+g‘𝑆) | |
30 | 8, 23, 4, 24, 27, 28, 29, 20 | pwsplusgval 17445 | . . . . 5 ⊢ (𝜑 → ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁)) = ((𝑄‘𝑀) ∘f + (𝑄‘𝑁))) |
31 | 22, 30 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀) ∘f + (𝑄‘𝑁))) |
32 | 31 | fveq1d 6887 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴)) |
33 | 8, 6, 23, 4, 24, 27 | pwselbas 17444 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑀):(𝐾 ↑m 𝐼)⟶𝐾) |
34 | 33 | ffnd 6712 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑀) Fn (𝐾 ↑m 𝐼)) |
35 | 8, 6, 23, 4, 24, 28 | pwselbas 17444 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑁):(𝐾 ↑m 𝐼)⟶𝐾) |
36 | 35 | ffnd 6712 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) |
37 | evladdval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
38 | fnfvof 7684 | . . . 4 ⊢ ((((𝑄‘𝑀) Fn (𝐾 ↑m 𝐼) ∧ (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) ∧ ((𝐾 ↑m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾 ↑m 𝐼))) → (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴))) | |
39 | 34, 36, 24, 37, 38 | syl22anc 836 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴))) |
40 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑀)‘𝐴) = 𝑉) |
41 | 17 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑁)‘𝐴) = 𝑊) |
42 | 40, 41 | oveq12d 7423 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴)) = (𝑉 + 𝑊)) |
43 | 32, 39, 42 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊)) |
44 | 19, 43 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3468 Fn wfn 6532 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 ∘f cof 7665 ↑m cmap 8822 Basecbs 17153 +gcplusg 17206 ↑s cpws 17401 Grpcgrp 18863 GrpHom cghm 19138 CRingccrg 20139 RingHom crh 20371 mPoly cmpl 21800 eval cevl 21976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-ofr 7668 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-fz 13491 df-fzo 13634 df-seq 13973 df-hash 14296 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-hom 17230 df-cco 17231 df-0g 17396 df-gsum 17397 df-prds 17402 df-pws 17404 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18713 df-submnd 18714 df-grp 18866 df-minusg 18867 df-sbg 18868 df-mulg 18996 df-subg 19050 df-ghm 19139 df-cntz 19233 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-srg 20092 df-ring 20140 df-cring 20141 df-rhm 20374 df-subrng 20446 df-subrg 20471 df-lmod 20708 df-lss 20779 df-lsp 20819 df-assa 21748 df-asp 21749 df-ascl 21750 df-psr 21803 df-mvr 21804 df-mpl 21805 df-evls 21977 df-evl 21978 |
This theorem is referenced by: selvadd 41717 |
Copyright terms: Public domain | W3C validator |