| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evladdval | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for addition. (Contributed by SN, 9-Feb-2025.) |
| Ref | Expression |
|---|---|
| evladdval.q | ⊢ 𝑄 = (𝐼 eval 𝑆) |
| evladdval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑆) |
| evladdval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evladdval.b | ⊢ 𝐵 = (Base‘𝑃) |
| evladdval.g | ⊢ ✚ = (+g‘𝑃) |
| evladdval.f | ⊢ + = (+g‘𝑆) |
| evladdval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| evladdval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evladdval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| evladdval.m | ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) |
| evladdval.n | ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) |
| Ref | Expression |
|---|---|
| evladdval | ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evladdval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 2 | evladdval.g | . . 3 ⊢ ✚ = (+g‘𝑃) | |
| 3 | evladdval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 4 | evladdval.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 5 | evladdval.q | . . . . . . 7 ⊢ 𝑄 = (𝐼 eval 𝑆) | |
| 6 | evladdval.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
| 7 | evladdval.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑆) | |
| 8 | eqid 2729 | . . . . . . 7 ⊢ (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
| 9 | 5, 6, 7, 8 | evlrhm 21979 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing) → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 10 | 3, 4, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 11 | rhmghm 20369 | . . . . 5 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 13 | ghmgrp1 19126 | . . . 4 ⊢ (𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑃 ∈ Grp) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 15 | evladdval.m | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) | |
| 16 | 15 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| 17 | evladdval.n | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) | |
| 18 | 17 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| 19 | 1, 2, 14, 16, 18 | grpcld 18855 | . 2 ⊢ (𝜑 → (𝑀 ✚ 𝑁) ∈ 𝐵) |
| 20 | eqid 2729 | . . . . . . 7 ⊢ (+g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (+g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 21 | 1, 2, 20 | ghmlin 19129 | . . . . . 6 ⊢ ((𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼))) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 22 | 12, 16, 18, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 23 | eqid 2729 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 24 | ovexd 7404 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | |
| 25 | 1, 23 | rhmf 20370 | . . . . . . . 8 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 26 | 10, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 27 | 26, 16 | ffvelcdmd 7039 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 28 | 26, 18 | ffvelcdmd 7039 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑁) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 29 | evladdval.f | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 30 | 8, 23, 4, 24, 27, 28, 29, 20 | pwsplusgval 17429 | . . . . 5 ⊢ (𝜑 → ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁)) = ((𝑄‘𝑀) ∘f + (𝑄‘𝑁))) |
| 31 | 22, 30 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀) ∘f + (𝑄‘𝑁))) |
| 32 | 31 | fveq1d 6842 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴)) |
| 33 | 8, 6, 23, 4, 24, 27 | pwselbas 17428 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑀):(𝐾 ↑m 𝐼)⟶𝐾) |
| 34 | 33 | ffnd 6671 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑀) Fn (𝐾 ↑m 𝐼)) |
| 35 | 8, 6, 23, 4, 24, 28 | pwselbas 17428 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑁):(𝐾 ↑m 𝐼)⟶𝐾) |
| 36 | 35 | ffnd 6671 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) |
| 37 | evladdval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 38 | fnfvof 7650 | . . . 4 ⊢ ((((𝑄‘𝑀) Fn (𝐾 ↑m 𝐼) ∧ (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) ∧ ((𝐾 ↑m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾 ↑m 𝐼))) → (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴))) | |
| 39 | 34, 36, 24, 37, 38 | syl22anc 838 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴))) |
| 40 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑀)‘𝐴) = 𝑉) |
| 41 | 17 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑁)‘𝐴) = 𝑊) |
| 42 | 40, 41 | oveq12d 7387 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴)) = (𝑉 + 𝑊)) |
| 43 | 32, 39, 42 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊)) |
| 44 | 19, 43 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ∘f cof 7631 ↑m cmap 8776 Basecbs 17155 +gcplusg 17196 ↑s cpws 17385 Grpcgrp 18841 GrpHom cghm 19120 CRingccrg 20119 RingHom crh 20354 mPoly cmpl 21791 eval cevl 21956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20744 df-lss 20814 df-lsp 20854 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-evls 21957 df-evl 21958 |
| This theorem is referenced by: selvadd 42549 |
| Copyright terms: Public domain | W3C validator |