| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evladdval | Structured version Visualization version GIF version | ||
| Description: Polynomial evaluation builder for addition. (Contributed by SN, 9-Feb-2025.) |
| Ref | Expression |
|---|---|
| evladdval.q | ⊢ 𝑄 = (𝐼 eval 𝑆) |
| evladdval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑆) |
| evladdval.k | ⊢ 𝐾 = (Base‘𝑆) |
| evladdval.b | ⊢ 𝐵 = (Base‘𝑃) |
| evladdval.g | ⊢ ✚ = (+g‘𝑃) |
| evladdval.f | ⊢ + = (+g‘𝑆) |
| evladdval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑍) |
| evladdval.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evladdval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| evladdval.m | ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) |
| evladdval.n | ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) |
| Ref | Expression |
|---|---|
| evladdval | ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evladdval.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 2 | evladdval.g | . . 3 ⊢ ✚ = (+g‘𝑃) | |
| 3 | evladdval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑍) | |
| 4 | evladdval.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 5 | evladdval.q | . . . . . . 7 ⊢ 𝑄 = (𝐼 eval 𝑆) | |
| 6 | evladdval.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑆) | |
| 7 | evladdval.p | . . . . . . 7 ⊢ 𝑃 = (𝐼 mPoly 𝑆) | |
| 8 | eqid 2731 | . . . . . . 7 ⊢ (𝑆 ↑s (𝐾 ↑m 𝐼)) = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
| 9 | 5, 6, 7, 8 | evlrhm 22031 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing) → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 10 | 3, 4, 9 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 11 | rhmghm 20401 | . . . . 5 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 13 | ghmgrp1 19130 | . . . 4 ⊢ (𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑃 ∈ Grp) | |
| 14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 15 | evladdval.m | . . . 4 ⊢ (𝜑 → (𝑀 ∈ 𝐵 ∧ ((𝑄‘𝑀)‘𝐴) = 𝑉)) | |
| 16 | 15 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| 17 | evladdval.n | . . . 4 ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ ((𝑄‘𝑁)‘𝐴) = 𝑊)) | |
| 18 | 17 | simpld 494 | . . 3 ⊢ (𝜑 → 𝑁 ∈ 𝐵) |
| 19 | 1, 2, 14, 16, 18 | grpcld 18860 | . 2 ⊢ (𝜑 → (𝑀 ✚ 𝑁) ∈ 𝐵) |
| 20 | eqid 2731 | . . . . . . 7 ⊢ (+g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (+g‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 21 | 1, 2, 20 | ghmlin 19133 | . . . . . 6 ⊢ ((𝑄 ∈ (𝑃 GrpHom (𝑆 ↑s (𝐾 ↑m 𝐼))) ∧ 𝑀 ∈ 𝐵 ∧ 𝑁 ∈ 𝐵) → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 22 | 12, 16, 18, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁))) |
| 23 | eqid 2731 | . . . . . 6 ⊢ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) = (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼))) | |
| 24 | ovexd 7381 | . . . . . 6 ⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | |
| 25 | 1, 23 | rhmf 20402 | . . . . . . . 8 ⊢ (𝑄 ∈ (𝑃 RingHom (𝑆 ↑s (𝐾 ↑m 𝐼))) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 26 | 10, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 27 | 26, 16 | ffvelcdmd 7018 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 28 | 26, 18 | ffvelcdmd 7018 | . . . . . 6 ⊢ (𝜑 → (𝑄‘𝑁) ∈ (Base‘(𝑆 ↑s (𝐾 ↑m 𝐼)))) |
| 29 | evladdval.f | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 30 | 8, 23, 4, 24, 27, 28, 29, 20 | pwsplusgval 17394 | . . . . 5 ⊢ (𝜑 → ((𝑄‘𝑀)(+g‘(𝑆 ↑s (𝐾 ↑m 𝐼)))(𝑄‘𝑁)) = ((𝑄‘𝑀) ∘f + (𝑄‘𝑁))) |
| 31 | 22, 30 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (𝑄‘(𝑀 ✚ 𝑁)) = ((𝑄‘𝑀) ∘f + (𝑄‘𝑁))) |
| 32 | 31 | fveq1d 6824 | . . 3 ⊢ (𝜑 → ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴)) |
| 33 | 8, 6, 23, 4, 24, 27 | pwselbas 17393 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑀):(𝐾 ↑m 𝐼)⟶𝐾) |
| 34 | 33 | ffnd 6652 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑀) Fn (𝐾 ↑m 𝐼)) |
| 35 | 8, 6, 23, 4, 24, 28 | pwselbas 17393 | . . . . 5 ⊢ (𝜑 → (𝑄‘𝑁):(𝐾 ↑m 𝐼)⟶𝐾) |
| 36 | 35 | ffnd 6652 | . . . 4 ⊢ (𝜑 → (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) |
| 37 | evladdval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 38 | fnfvof 7627 | . . . 4 ⊢ ((((𝑄‘𝑀) Fn (𝐾 ↑m 𝐼) ∧ (𝑄‘𝑁) Fn (𝐾 ↑m 𝐼)) ∧ ((𝐾 ↑m 𝐼) ∈ V ∧ 𝐴 ∈ (𝐾 ↑m 𝐼))) → (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴))) | |
| 39 | 34, 36, 24, 37, 38 | syl22anc 838 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀) ∘f + (𝑄‘𝑁))‘𝐴) = (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴))) |
| 40 | 15 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑀)‘𝐴) = 𝑉) |
| 41 | 17 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑄‘𝑁)‘𝐴) = 𝑊) |
| 42 | 40, 41 | oveq12d 7364 | . . 3 ⊢ (𝜑 → (((𝑄‘𝑀)‘𝐴) + ((𝑄‘𝑁)‘𝐴)) = (𝑉 + 𝑊)) |
| 43 | 32, 39, 42 | 3eqtrd 2770 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊)) |
| 44 | 19, 43 | jca 511 | 1 ⊢ (𝜑 → ((𝑀 ✚ 𝑁) ∈ 𝐵 ∧ ((𝑄‘(𝑀 ✚ 𝑁))‘𝐴) = (𝑉 + 𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 ↑m cmap 8750 Basecbs 17120 +gcplusg 17161 ↑s cpws 17350 Grpcgrp 18846 GrpHom cghm 19124 CRingccrg 20152 RingHom crh 20387 mPoly cmpl 21843 eval cevl 22008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-ofr 7611 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-mulg 18981 df-subg 19036 df-ghm 19125 df-cntz 19229 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-srg 20105 df-ring 20153 df-cring 20154 df-rhm 20390 df-subrng 20461 df-subrg 20485 df-lmod 20795 df-lss 20865 df-lsp 20905 df-assa 21790 df-asp 21791 df-ascl 21792 df-psr 21846 df-mvr 21847 df-mpl 21848 df-evls 22009 df-evl 22010 |
| This theorem is referenced by: selvadd 42629 |
| Copyright terms: Public domain | W3C validator |