| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvcld | Structured version Visualization version GIF version | ||
| Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpinvcld.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvcld.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpinvcld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpinvcld.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpinvcld | ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpinvcld.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpinvcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grpinvcld.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | 3, 4 | grpinvcl 18885 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 6 | 1, 2, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 Basecbs 17139 Grpcgrp 18831 invgcminusg 18832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-minusg 18835 |
| This theorem is referenced by: grpraddf1o 18912 xpsinv 18958 eqger 19076 conjnmz 19150 ghmqusnsglem1 19178 ghmquskerlem1 19181 rngmneg1 20071 rngmneg2 20072 rngm2neg 20073 rngsubdi 20075 rngsubdir 20076 cntzsubrng 20471 lssvnegcl 20878 mhpinvcl 22056 fxpsubg 33134 rloccring 33229 qsdrngilem 33450 ply1dg1rt 33534 r1padd1 33559 ply1divalg3 35634 grpcominv1 42501 |
| Copyright terms: Public domain | W3C validator |