MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvcld Structured version   Visualization version   GIF version

Theorem grpinvcld 19028
Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpinvcld.b 𝐵 = (Base‘𝐺)
grpinvcld.n 𝑁 = (invg𝐺)
grpinvcld.g (𝜑𝐺 ∈ Grp)
grpinvcld.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
grpinvcld (𝜑 → (𝑁𝑋) ∈ 𝐵)

Proof of Theorem grpinvcld
StepHypRef Expression
1 grpinvcld.g . 2 (𝜑𝐺 ∈ Grp)
2 grpinvcld.1 . 2 (𝜑𝑋𝐵)
3 grpinvcld.b . . 3 𝐵 = (Base‘𝐺)
4 grpinvcld.n . . 3 𝑁 = (invg𝐺)
53, 4grpinvcl 19027 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
61, 2, 5syl2anc 583 1 (𝜑 → (𝑁𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  Basecbs 17258  Grpcgrp 18973  invgcminusg 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-riota 7404  df-ov 7451  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977
This theorem is referenced by:  grpraddf1o  19054  xpsinv  19100  eqger  19218  conjnmz  19292  ghmqusnsglem1  19320  ghmquskerlem1  19323  rngmneg1  20194  rngmneg2  20195  rngm2neg  20196  rngsubdi  20198  rngsubdir  20199  cntzsubrng  20593  lssvnegcl  20977  mhpinvcl  22179  rloccring  33242  qsdrngilem  33487  ply1dg1rt  33569  r1padd1  33593  ply1divalg3  35610  grpcominv1  42463
  Copyright terms: Public domain W3C validator