MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvcld Structured version   Visualization version   GIF version

Theorem grpinvcld 18920
Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpinvcld.b 𝐵 = (Base‘𝐺)
grpinvcld.n 𝑁 = (invg𝐺)
grpinvcld.g (𝜑𝐺 ∈ Grp)
grpinvcld.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
grpinvcld (𝜑 → (𝑁𝑋) ∈ 𝐵)

Proof of Theorem grpinvcld
StepHypRef Expression
1 grpinvcld.g . 2 (𝜑𝐺 ∈ Grp)
2 grpinvcld.1 . 2 (𝜑𝑋𝐵)
3 grpinvcld.b . . 3 𝐵 = (Base‘𝐺)
4 grpinvcld.n . . 3 𝑁 = (invg𝐺)
53, 4grpinvcl 18919 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
61, 2, 5syl2anc 584 1 (𝜑 → (𝑁𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6511  Basecbs 17179  Grpcgrp 18865  invgcminusg 18866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869
This theorem is referenced by:  grpraddf1o  18946  xpsinv  18992  eqger  19110  conjnmz  19184  ghmqusnsglem1  19212  ghmquskerlem1  19215  rngmneg1  20076  rngmneg2  20077  rngm2neg  20078  rngsubdi  20080  rngsubdir  20081  cntzsubrng  20476  lssvnegcl  20862  mhpinvcl  22039  rloccring  33221  qsdrngilem  33465  ply1dg1rt  33548  r1padd1  33573  ply1divalg3  35629  grpcominv1  42496
  Copyright terms: Public domain W3C validator