| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvcld | Structured version Visualization version GIF version | ||
| Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpinvcld.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvcld.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpinvcld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpinvcld.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpinvcld | ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpinvcld.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpinvcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grpinvcld.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | 3, 4 | grpinvcl 18970 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 6 | 1, 2, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 Basecbs 17228 Grpcgrp 18916 invgcminusg 18917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-riota 7362 df-ov 7408 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 |
| This theorem is referenced by: grpraddf1o 18997 xpsinv 19043 eqger 19161 conjnmz 19235 ghmqusnsglem1 19263 ghmquskerlem1 19266 rngmneg1 20127 rngmneg2 20128 rngm2neg 20129 rngsubdi 20131 rngsubdir 20132 cntzsubrng 20527 lssvnegcl 20913 mhpinvcl 22090 rloccring 33265 qsdrngilem 33509 ply1dg1rt 33592 r1padd1 33617 ply1divalg3 35664 grpcominv1 42531 |
| Copyright terms: Public domain | W3C validator |