MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvcld Structured version   Visualization version   GIF version

Theorem grpinvcld 18901
Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpinvcld.b 𝐵 = (Base‘𝐺)
grpinvcld.n 𝑁 = (invg𝐺)
grpinvcld.g (𝜑𝐺 ∈ Grp)
grpinvcld.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
grpinvcld (𝜑 → (𝑁𝑋) ∈ 𝐵)

Proof of Theorem grpinvcld
StepHypRef Expression
1 grpinvcld.g . 2 (𝜑𝐺 ∈ Grp)
2 grpinvcld.1 . 2 (𝜑𝑋𝐵)
3 grpinvcld.b . . 3 𝐵 = (Base‘𝐺)
4 grpinvcld.n . . 3 𝑁 = (invg𝐺)
53, 4grpinvcl 18900 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
61, 2, 5syl2anc 584 1 (𝜑 → (𝑁𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  Basecbs 17120  Grpcgrp 18846  invgcminusg 18847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-riota 7303  df-ov 7349  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850
This theorem is referenced by:  grpraddf1o  18927  xpsinv  18973  eqger  19090  conjnmz  19164  ghmqusnsglem1  19192  ghmquskerlem1  19195  rngmneg1  20085  rngmneg2  20086  rngm2neg  20087  rngsubdi  20089  rngsubdir  20090  cntzsubrng  20482  lssvnegcl  20889  mhpinvcl  22067  fxpsubg  33142  rloccring  33237  qsdrngilem  33459  ply1dg1rt  33543  r1padd1  33568  ply1divalg3  35686  grpcominv1  42549
  Copyright terms: Public domain W3C validator