| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpinvcld | Structured version Visualization version GIF version | ||
| Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| grpinvcld.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinvcld.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpinvcld.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpinvcld.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpinvcld | ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvcld.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 2 | grpinvcld.1 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | grpinvcld.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | grpinvcld.n | . . 3 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | 3, 4 | grpinvcl 18895 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 6 | 1, 2, 5 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑁‘𝑋) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 Basecbs 17155 Grpcgrp 18841 invgcminusg 18842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-riota 7326 df-ov 7372 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 |
| This theorem is referenced by: grpraddf1o 18922 xpsinv 18968 eqger 19086 conjnmz 19160 ghmqusnsglem1 19188 ghmquskerlem1 19191 rngmneg1 20052 rngmneg2 20053 rngm2neg 20054 rngsubdi 20056 rngsubdir 20057 cntzsubrng 20452 lssvnegcl 20838 mhpinvcl 22015 rloccring 33194 qsdrngilem 33438 ply1dg1rt 33521 r1padd1 33546 ply1divalg3 35602 grpcominv1 42469 |
| Copyright terms: Public domain | W3C validator |