MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvcld Structured version   Visualization version   GIF version

Theorem grpinvcld 19019
Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025.)
Hypotheses
Ref Expression
grpinvcld.b 𝐵 = (Base‘𝐺)
grpinvcld.n 𝑁 = (invg𝐺)
grpinvcld.g (𝜑𝐺 ∈ Grp)
grpinvcld.1 (𝜑𝑋𝐵)
Assertion
Ref Expression
grpinvcld (𝜑 → (𝑁𝑋) ∈ 𝐵)

Proof of Theorem grpinvcld
StepHypRef Expression
1 grpinvcld.g . 2 (𝜑𝐺 ∈ Grp)
2 grpinvcld.1 . 2 (𝜑𝑋𝐵)
3 grpinvcld.b . . 3 𝐵 = (Base‘𝐺)
4 grpinvcld.n . . 3 𝑁 = (invg𝐺)
53, 4grpinvcl 19018 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
61, 2, 5syl2anc 584 1 (𝜑 → (𝑁𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  Basecbs 17245  Grpcgrp 18964  invgcminusg 18965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968
This theorem is referenced by:  grpraddf1o  19045  xpsinv  19091  eqger  19209  conjnmz  19283  ghmqusnsglem1  19311  ghmquskerlem1  19314  rngmneg1  20185  rngmneg2  20186  rngm2neg  20187  rngsubdi  20189  rngsubdir  20190  cntzsubrng  20584  lssvnegcl  20972  mhpinvcl  22174  rloccring  33257  qsdrngilem  33502  ply1dg1rt  33584  r1padd1  33608  ply1divalg3  35627  grpcominv1  42495
  Copyright terms: Public domain W3C validator