![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ringinvval | Structured version Visualization version GIF version |
Description: The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
Ref | Expression |
---|---|
ringinvval.b | β’ π΅ = (Baseβπ ) |
ringinvval.p | β’ β = (.rβπ ) |
ringinvval.o | β’ 1 = (1rβπ ) |
ringinvval.n | β’ π = (invrβπ ) |
ringinvval.u | β’ π = (Unitβπ ) |
Ref | Expression |
---|---|
ringinvval | β’ ((π β Ring β§ π β π) β (πβπ) = (β©π¦ β π (π¦ β π) = 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringinvval.u | . . . . 5 β’ π = (Unitβπ ) | |
2 | eqid 2732 | . . . . 5 β’ ((mulGrpβπ ) βΎs π) = ((mulGrpβπ ) βΎs π) | |
3 | 1, 2 | unitgrpbas 20195 | . . . 4 β’ π = (Baseβ((mulGrpβπ ) βΎs π)) |
4 | 1 | fvexi 6905 | . . . . 5 β’ π β V |
5 | eqid 2732 | . . . . . . 7 β’ (mulGrpβπ ) = (mulGrpβπ ) | |
6 | ringinvval.p | . . . . . . 7 β’ β = (.rβπ ) | |
7 | 5, 6 | mgpplusg 19990 | . . . . . 6 β’ β = (+gβ(mulGrpβπ )) |
8 | 2, 7 | ressplusg 17234 | . . . . 5 β’ (π β V β β = (+gβ((mulGrpβπ ) βΎs π))) |
9 | 4, 8 | ax-mp 5 | . . . 4 β’ β = (+gβ((mulGrpβπ ) βΎs π)) |
10 | eqid 2732 | . . . 4 β’ (0gβ((mulGrpβπ ) βΎs π)) = (0gβ((mulGrpβπ ) βΎs π)) | |
11 | ringinvval.n | . . . . 5 β’ π = (invrβπ ) | |
12 | 1, 2, 11 | invrfval 20202 | . . . 4 β’ π = (invgβ((mulGrpβπ ) βΎs π)) |
13 | 3, 9, 10, 12 | grpinvval 18864 | . . 3 β’ (π β π β (πβπ) = (β©π¦ β π (π¦ β π) = (0gβ((mulGrpβπ ) βΎs π)))) |
14 | 13 | adantl 482 | . 2 β’ ((π β Ring β§ π β π) β (πβπ) = (β©π¦ β π (π¦ β π) = (0gβ((mulGrpβπ ) βΎs π)))) |
15 | ringinvval.o | . . . . . . 7 β’ 1 = (1rβπ ) | |
16 | 1, 2, 15 | unitgrpid 20198 | . . . . . 6 β’ (π β Ring β 1 = (0gβ((mulGrpβπ ) βΎs π))) |
17 | 16 | adantr 481 | . . . . 5 β’ ((π β Ring β§ π¦ β π) β 1 = (0gβ((mulGrpβπ ) βΎs π))) |
18 | 17 | eqeq2d 2743 | . . . 4 β’ ((π β Ring β§ π¦ β π) β ((π¦ β π) = 1 β (π¦ β π) = (0gβ((mulGrpβπ ) βΎs π)))) |
19 | 18 | riotabidva 7384 | . . 3 β’ (π β Ring β (β©π¦ β π (π¦ β π) = 1 ) = (β©π¦ β π (π¦ β π) = (0gβ((mulGrpβπ ) βΎs π)))) |
20 | 19 | adantr 481 | . 2 β’ ((π β Ring β§ π β π) β (β©π¦ β π (π¦ β π) = 1 ) = (β©π¦ β π (π¦ β π) = (0gβ((mulGrpβπ ) βΎs π)))) |
21 | 14, 20 | eqtr4d 2775 | 1 β’ ((π β Ring β§ π β π) β (πβπ) = (β©π¦ β π (π¦ β π) = 1 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 βcfv 6543 β©crio 7363 (class class class)co 7408 Basecbs 17143 βΎs cress 17172 +gcplusg 17196 .rcmulr 17197 0gc0g 17384 mulGrpcmgp 19986 1rcur 20003 Ringcrg 20055 Unitcui 20168 invrcinvr 20200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-mgp 19987 df-ur 20004 df-ring 20057 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |