Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ringinvval Structured version   Visualization version   GIF version

Theorem ringinvval 33185
Description: The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Hypotheses
Ref Expression
ringinvval.b 𝐵 = (Base‘𝑅)
ringinvval.p = (.r𝑅)
ringinvval.o 1 = (1r𝑅)
ringinvval.n 𝑁 = (invr𝑅)
ringinvval.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
ringinvval ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) = (𝑦𝑈 (𝑦 𝑋) = 1 ))
Distinct variable groups:   𝑦,𝑅   𝑦,𝑈   𝑦,𝑋
Allowed substitution hints:   𝐵(𝑦)   1 (𝑦)   (𝑦)   𝑁(𝑦)

Proof of Theorem ringinvval
StepHypRef Expression
1 ringinvval.u . . . . 5 𝑈 = (Unit‘𝑅)
2 eqid 2729 . . . . 5 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
31, 2unitgrpbas 20285 . . . 4 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
41fvexi 6840 . . . . 5 𝑈 ∈ V
5 eqid 2729 . . . . . . 7 (mulGrp‘𝑅) = (mulGrp‘𝑅)
6 ringinvval.p . . . . . . 7 = (.r𝑅)
75, 6mgpplusg 20047 . . . . . 6 = (+g‘(mulGrp‘𝑅))
82, 7ressplusg 17213 . . . . 5 (𝑈 ∈ V → = (+g‘((mulGrp‘𝑅) ↾s 𝑈)))
94, 8ax-mp 5 . . . 4 = (+g‘((mulGrp‘𝑅) ↾s 𝑈))
10 eqid 2729 . . . 4 (0g‘((mulGrp‘𝑅) ↾s 𝑈)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))
11 ringinvval.n . . . . 5 𝑁 = (invr𝑅)
121, 2, 11invrfval 20292 . . . 4 𝑁 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
133, 9, 10, 12grpinvval 18877 . . 3 (𝑋𝑈 → (𝑁𝑋) = (𝑦𝑈 (𝑦 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))))
1413adantl 481 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) = (𝑦𝑈 (𝑦 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))))
15 ringinvval.o . . . . . . 7 1 = (1r𝑅)
161, 2, 15unitgrpid 20288 . . . . . 6 (𝑅 ∈ Ring → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
1716adantr 480 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑦𝑈) → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))
1817eqeq2d 2740 . . . 4 ((𝑅 ∈ Ring ∧ 𝑦𝑈) → ((𝑦 𝑋) = 1 ↔ (𝑦 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))))
1918riotabidva 7329 . . 3 (𝑅 ∈ Ring → (𝑦𝑈 (𝑦 𝑋) = 1 ) = (𝑦𝑈 (𝑦 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))))
2019adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑦𝑈 (𝑦 𝑋) = 1 ) = (𝑦𝑈 (𝑦 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈))))
2114, 20eqtr4d 2767 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝑁𝑋) = (𝑦𝑈 (𝑦 𝑋) = 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17138  s cress 17159  +gcplusg 17179  .rcmulr 17180  0gc0g 17361  mulGrpcmgp 20043  1rcur 20084  Ringcrg 20136  Unitcui 20258  invrcinvr 20290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator