| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ringinvval | Structured version Visualization version GIF version | ||
| Description: The ring inverse expressed in terms of multiplication. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| Ref | Expression |
|---|---|
| ringinvval.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringinvval.p | ⊢ ∗ = (.r‘𝑅) |
| ringinvval.o | ⊢ 1 = (1r‘𝑅) |
| ringinvval.n | ⊢ 𝑁 = (invr‘𝑅) |
| ringinvval.u | ⊢ 𝑈 = (Unit‘𝑅) |
| Ref | Expression |
|---|---|
| ringinvval | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) = (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringinvval.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 2 | eqid 2736 | . . . . 5 ⊢ ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 3 | 1, 2 | unitgrpbas 20347 | . . . 4 ⊢ 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 4 | 1 | fvexi 6895 | . . . . 5 ⊢ 𝑈 ∈ V |
| 5 | eqid 2736 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 6 | ringinvval.p | . . . . . . 7 ⊢ ∗ = (.r‘𝑅) | |
| 7 | 5, 6 | mgpplusg 20109 | . . . . . 6 ⊢ ∗ = (+g‘(mulGrp‘𝑅)) |
| 8 | 2, 7 | ressplusg 17310 | . . . . 5 ⊢ (𝑈 ∈ V → ∗ = (+g‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 9 | 4, 8 | ax-mp 5 | . . . 4 ⊢ ∗ = (+g‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 10 | eqid 2736 | . . . 4 ⊢ (0g‘((mulGrp‘𝑅) ↾s 𝑈)) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)) | |
| 11 | ringinvval.n | . . . . 5 ⊢ 𝑁 = (invr‘𝑅) | |
| 12 | 1, 2, 11 | invrfval 20354 | . . . 4 ⊢ 𝑁 = (invg‘((mulGrp‘𝑅) ↾s 𝑈)) |
| 13 | 3, 9, 10, 12 | grpinvval 18968 | . . 3 ⊢ (𝑋 ∈ 𝑈 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 14 | 13 | adantl 481 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) = (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 15 | ringinvval.o | . . . . . . 7 ⊢ 1 = (1r‘𝑅) | |
| 16 | 1, 2, 15 | unitgrpid 20350 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 17 | 16 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑈) → 1 = (0g‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 18 | 17 | eqeq2d 2747 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑈) → ((𝑦 ∗ 𝑋) = 1 ↔ (𝑦 ∗ 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 19 | 18 | riotabidva 7386 | . . 3 ⊢ (𝑅 ∈ Ring → (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = 1 ) = (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 20 | 19 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = 1 ) = (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = (0g‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 21 | 14, 20 | eqtr4d 2774 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) = (℩𝑦 ∈ 𝑈 (𝑦 ∗ 𝑋) = 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 +gcplusg 17276 .rcmulr 17277 0gc0g 17458 mulGrpcmgp 20105 1rcur 20146 Ringcrg 20198 Unitcui 20320 invrcinvr 20352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |