![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpodivf | Structured version Visualization version GIF version |
Description: Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpodivf | ⊢ (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdivf.1 | . . . . . . . 8 ⊢ 𝑋 = ran 𝐺 | |
2 | eqid 2771 | . . . . . . . 8 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
3 | 1, 2 | grpoinvcl 27718 | . . . . . . 7 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋) |
4 | 3 | 3adant2 1125 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋) |
5 | 1 | grpocl 27694 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ ((inv‘𝐺)‘𝑦) ∈ 𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋) |
6 | 4, 5 | syld3an3 1515 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋) |
7 | 6 | 3expib 1116 | . . . 4 ⊢ (𝐺 ∈ GrpOp → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)) |
8 | 7 | ralrimivv 3119 | . . 3 ⊢ (𝐺 ∈ GrpOp → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋) |
9 | eqid 2771 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))) | |
10 | 9 | fmpt2 7387 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋) |
11 | 8, 10 | sylib 208 | . 2 ⊢ (𝐺 ∈ GrpOp → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋) |
12 | grpdivf.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
13 | 1, 2, 12 | grpodivfval 27728 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
14 | 13 | feq1d 6170 | . 2 ⊢ (𝐺 ∈ GrpOp → (𝐷:(𝑋 × 𝑋)⟶𝑋 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋)) |
15 | 11, 14 | mpbird 247 | 1 ⊢ (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∀wral 3061 × cxp 5247 ran crn 5250 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ↦ cmpt2 6795 GrpOpcgr 27683 invcgn 27685 /𝑔 cgs 27686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-grpo 27687 df-gid 27688 df-ginv 27689 df-gdiv 27690 |
This theorem is referenced by: grpodivcl 27733 |
Copyright terms: Public domain | W3C validator |