MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivf Structured version   Visualization version   GIF version

Theorem grpodivf 28801
Description: Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivf (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem grpodivf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdivf.1 . . . . . . . 8 𝑋 = ran 𝐺
2 eqid 2738 . . . . . . . 8 (inv‘𝐺) = (inv‘𝐺)
31, 2grpoinvcl 28787 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋)
433adant2 1129 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋)
51grpocl 28763 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋 ∧ ((inv‘𝐺)‘𝑦) ∈ 𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
64, 5syld3an3 1407 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
763expib 1120 . . . 4 (𝐺 ∈ GrpOp → ((𝑥𝑋𝑦𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋))
87ralrimivv 3113 . . 3 (𝐺 ∈ GrpOp → ∀𝑥𝑋𝑦𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
9 eqid 2738 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))
109fmpo 7881 . . 3 (∀𝑥𝑋𝑦𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋 ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋)
118, 10sylib 217 . 2 (𝐺 ∈ GrpOp → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋)
12 grpdivf.3 . . . 4 𝐷 = ( /𝑔𝐺)
131, 2, 12grpodivfval 28797 . . 3 (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
1413feq1d 6569 . 2 (𝐺 ∈ GrpOp → (𝐷:(𝑋 × 𝑋)⟶𝑋 ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋))
1511, 14mpbird 256 1 (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wral 3063   × cxp 5578  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  GrpOpcgr 28752  invcgn 28754   /𝑔 cgs 28755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759
This theorem is referenced by:  grpodivcl  28802
  Copyright terms: Public domain W3C validator