Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpodivf | Structured version Visualization version GIF version |
Description: Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
Ref | Expression |
---|---|
grpodivf | ⊢ (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdivf.1 | . . . . . . . 8 ⊢ 𝑋 = ran 𝐺 | |
2 | eqid 2738 | . . . . . . . 8 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
3 | 1, 2 | grpoinvcl 28886 | . . . . . . 7 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋) |
4 | 3 | 3adant2 1130 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋) |
5 | 1 | grpocl 28862 | . . . . . 6 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ ((inv‘𝐺)‘𝑦) ∈ 𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋) |
6 | 4, 5 | syld3an3 1408 | . . . . 5 ⊢ ((𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋) |
7 | 6 | 3expib 1121 | . . . 4 ⊢ (𝐺 ∈ GrpOp → ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)) |
8 | 7 | ralrimivv 3122 | . . 3 ⊢ (𝐺 ∈ GrpOp → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋) |
9 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))) | |
10 | 9 | fmpo 7908 | . . 3 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋) |
11 | 8, 10 | sylib 217 | . 2 ⊢ (𝐺 ∈ GrpOp → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋) |
12 | grpdivf.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
13 | 1, 2, 12 | grpodivfval 28896 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
14 | 13 | feq1d 6585 | . 2 ⊢ (𝐺 ∈ GrpOp → (𝐷:(𝑋 × 𝑋)⟶𝑋 ↔ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋)) |
15 | 11, 14 | mpbird 256 | 1 ⊢ (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 × cxp 5587 ran crn 5590 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 GrpOpcgr 28851 invcgn 28853 /𝑔 cgs 28854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-grpo 28855 df-gid 28856 df-ginv 28857 df-gdiv 28858 |
This theorem is referenced by: grpodivcl 28901 |
Copyright terms: Public domain | W3C validator |