MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivf Structured version   Visualization version   GIF version

Theorem grpodivf 30567
Description: Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivf (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem grpodivf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdivf.1 . . . . . . . 8 𝑋 = ran 𝐺
2 eqid 2735 . . . . . . . 8 (inv‘𝐺) = (inv‘𝐺)
31, 2grpoinvcl 30553 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋)
433adant2 1130 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋)
51grpocl 30529 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋 ∧ ((inv‘𝐺)‘𝑦) ∈ 𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
64, 5syld3an3 1408 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
763expib 1121 . . . 4 (𝐺 ∈ GrpOp → ((𝑥𝑋𝑦𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋))
87ralrimivv 3198 . . 3 (𝐺 ∈ GrpOp → ∀𝑥𝑋𝑦𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
9 eqid 2735 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))
109fmpo 8092 . . 3 (∀𝑥𝑋𝑦𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋 ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋)
118, 10sylib 218 . 2 (𝐺 ∈ GrpOp → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋)
12 grpdivf.3 . . . 4 𝐷 = ( /𝑔𝐺)
131, 2, 12grpodivfval 30563 . . 3 (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
1413feq1d 6721 . 2 (𝐺 ∈ GrpOp → (𝐷:(𝑋 × 𝑋)⟶𝑋 ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋))
1511, 14mpbird 257 1 (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059   × cxp 5687  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  GrpOpcgr 30518  invcgn 30520   /𝑔 cgs 30521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525
This theorem is referenced by:  grpodivcl  30568
  Copyright terms: Public domain W3C validator