MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivf Structured version   Visualization version   GIF version

Theorem grpodivf 30376
Description: Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔 β€˜πΊ)
Assertion
Ref Expression
grpodivf (𝐺 ∈ GrpOp β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆπ‘‹)

Proof of Theorem grpodivf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdivf.1 . . . . . . . 8 𝑋 = ran 𝐺
2 eqid 2728 . . . . . . . 8 (invβ€˜πΊ) = (invβ€˜πΊ)
31, 2grpoinvcl 30362 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ ((invβ€˜πΊ)β€˜π‘¦) ∈ 𝑋)
433adant2 1128 . . . . . 6 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ ((invβ€˜πΊ)β€˜π‘¦) ∈ 𝑋)
51grpocl 30338 . . . . . 6 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋 ∧ ((invβ€˜πΊ)β€˜π‘¦) ∈ 𝑋) β†’ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)) ∈ 𝑋)
64, 5syld3an3 1406 . . . . 5 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)) ∈ 𝑋)
763expib 1119 . . . 4 (𝐺 ∈ GrpOp β†’ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)) ∈ 𝑋))
87ralrimivv 3196 . . 3 (𝐺 ∈ GrpOp β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)) ∈ 𝑋)
9 eqid 2728 . . . 4 (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦))) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)))
109fmpo 8080 . . 3 (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)) ∈ 𝑋 ↔ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦))):(𝑋 Γ— 𝑋)βŸΆπ‘‹)
118, 10sylib 217 . 2 (𝐺 ∈ GrpOp β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦))):(𝑋 Γ— 𝑋)βŸΆπ‘‹)
12 grpdivf.3 . . . 4 𝐷 = ( /𝑔 β€˜πΊ)
131, 2, 12grpodivfval 30372 . . 3 (𝐺 ∈ GrpOp β†’ 𝐷 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦))))
1413feq1d 6712 . 2 (𝐺 ∈ GrpOp β†’ (𝐷:(𝑋 Γ— 𝑋)βŸΆπ‘‹ ↔ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦))):(𝑋 Γ— 𝑋)βŸΆπ‘‹))
1511, 14mpbird 256 1 (𝐺 ∈ GrpOp β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆπ‘‹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  βˆ€wral 3058   Γ— cxp 5680  ran crn 5683  βŸΆwf 6549  β€˜cfv 6553  (class class class)co 7426   ∈ cmpo 7428  GrpOpcgr 30327  invcgn 30329   /𝑔 cgs 30330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-grpo 30331  df-gid 30332  df-ginv 30333  df-gdiv 30334
This theorem is referenced by:  grpodivcl  30377
  Copyright terms: Public domain W3C validator