MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivf Structured version   Visualization version   GIF version

Theorem grpodivf 29791
Description: Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔 β€˜πΊ)
Assertion
Ref Expression
grpodivf (𝐺 ∈ GrpOp β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆπ‘‹)

Proof of Theorem grpodivf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdivf.1 . . . . . . . 8 𝑋 = ran 𝐺
2 eqid 2733 . . . . . . . 8 (invβ€˜πΊ) = (invβ€˜πΊ)
31, 2grpoinvcl 29777 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦 ∈ 𝑋) β†’ ((invβ€˜πΊ)β€˜π‘¦) ∈ 𝑋)
433adant2 1132 . . . . . 6 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ ((invβ€˜πΊ)β€˜π‘¦) ∈ 𝑋)
51grpocl 29753 . . . . . 6 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋 ∧ ((invβ€˜πΊ)β€˜π‘¦) ∈ 𝑋) β†’ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)) ∈ 𝑋)
64, 5syld3an3 1410 . . . . 5 ((𝐺 ∈ GrpOp ∧ π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)) ∈ 𝑋)
763expib 1123 . . . 4 (𝐺 ∈ GrpOp β†’ ((π‘₯ ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) β†’ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)) ∈ 𝑋))
87ralrimivv 3199 . . 3 (𝐺 ∈ GrpOp β†’ βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)) ∈ 𝑋)
9 eqid 2733 . . . 4 (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦))) = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)))
109fmpo 8054 . . 3 (βˆ€π‘₯ ∈ 𝑋 βˆ€π‘¦ ∈ 𝑋 (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦)) ∈ 𝑋 ↔ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦))):(𝑋 Γ— 𝑋)βŸΆπ‘‹)
118, 10sylib 217 . 2 (𝐺 ∈ GrpOp β†’ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦))):(𝑋 Γ— 𝑋)βŸΆπ‘‹)
12 grpdivf.3 . . . 4 𝐷 = ( /𝑔 β€˜πΊ)
131, 2, 12grpodivfval 29787 . . 3 (𝐺 ∈ GrpOp β†’ 𝐷 = (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦))))
1413feq1d 6703 . 2 (𝐺 ∈ GrpOp β†’ (𝐷:(𝑋 Γ— 𝑋)βŸΆπ‘‹ ↔ (π‘₯ ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (π‘₯𝐺((invβ€˜πΊ)β€˜π‘¦))):(𝑋 Γ— 𝑋)βŸΆπ‘‹))
1511, 14mpbird 257 1 (𝐺 ∈ GrpOp β†’ 𝐷:(𝑋 Γ— 𝑋)βŸΆπ‘‹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062   Γ— cxp 5675  ran crn 5678  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  GrpOpcgr 29742  invcgn 29744   /𝑔 cgs 29745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-grpo 29746  df-gid 29747  df-ginv 29748  df-gdiv 29749
This theorem is referenced by:  grpodivcl  29792
  Copyright terms: Public domain W3C validator