MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivf Structured version   Visualization version   GIF version

Theorem grpodivf 30504
Description: Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivf (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem grpodivf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdivf.1 . . . . . . . 8 𝑋 = ran 𝐺
2 eqid 2734 . . . . . . . 8 (inv‘𝐺) = (inv‘𝐺)
31, 2grpoinvcl 30490 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋)
433adant2 1131 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋)
51grpocl 30466 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋 ∧ ((inv‘𝐺)‘𝑦) ∈ 𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
64, 5syld3an3 1410 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
763expib 1122 . . . 4 (𝐺 ∈ GrpOp → ((𝑥𝑋𝑦𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋))
87ralrimivv 3187 . . 3 (𝐺 ∈ GrpOp → ∀𝑥𝑋𝑦𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
9 eqid 2734 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))
109fmpo 8076 . . 3 (∀𝑥𝑋𝑦𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋 ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋)
118, 10sylib 218 . 2 (𝐺 ∈ GrpOp → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋)
12 grpdivf.3 . . . 4 𝐷 = ( /𝑔𝐺)
131, 2, 12grpodivfval 30500 . . 3 (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
1413feq1d 6701 . 2 (𝐺 ∈ GrpOp → (𝐷:(𝑋 × 𝑋)⟶𝑋 ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋))
1511, 14mpbird 257 1 (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050   × cxp 5665  ran crn 5668  wf 6538  cfv 6542  (class class class)co 7414  cmpo 7416  GrpOpcgr 30455  invcgn 30457   /𝑔 cgs 30458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-grpo 30459  df-gid 30460  df-ginv 30461  df-gdiv 30462
This theorem is referenced by:  grpodivcl  30505
  Copyright terms: Public domain W3C validator