MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpodivf Structured version   Visualization version   GIF version

Theorem grpodivf 30440
Description: Mapping for group division. (Contributed by NM, 10-Apr-2008.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpdivf.1 𝑋 = ran 𝐺
grpdivf.3 𝐷 = ( /𝑔𝐺)
Assertion
Ref Expression
grpodivf (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋)

Proof of Theorem grpodivf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grpdivf.1 . . . . . . . 8 𝑋 = ran 𝐺
2 eqid 2729 . . . . . . . 8 (inv‘𝐺) = (inv‘𝐺)
31, 2grpoinvcl 30426 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝑦𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋)
433adant2 1131 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → ((inv‘𝐺)‘𝑦) ∈ 𝑋)
51grpocl 30402 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋 ∧ ((inv‘𝐺)‘𝑦) ∈ 𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
64, 5syld3an3 1411 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
763expib 1122 . . . 4 (𝐺 ∈ GrpOp → ((𝑥𝑋𝑦𝑋) → (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋))
87ralrimivv 3176 . . 3 (𝐺 ∈ GrpOp → ∀𝑥𝑋𝑦𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋)
9 eqid 2729 . . . 4 (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))
109fmpo 8026 . . 3 (∀𝑥𝑋𝑦𝑋 (𝑥𝐺((inv‘𝐺)‘𝑦)) ∈ 𝑋 ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋)
118, 10sylib 218 . 2 (𝐺 ∈ GrpOp → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋)
12 grpdivf.3 . . . 4 𝐷 = ( /𝑔𝐺)
131, 2, 12grpodivfval 30436 . . 3 (𝐺 ∈ GrpOp → 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
1413feq1d 6652 . 2 (𝐺 ∈ GrpOp → (𝐷:(𝑋 × 𝑋)⟶𝑋 ↔ (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))):(𝑋 × 𝑋)⟶𝑋))
1511, 14mpbird 257 1 (𝐺 ∈ GrpOp → 𝐷:(𝑋 × 𝑋)⟶𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wral 3044   × cxp 5629  ran crn 5632  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  GrpOpcgr 30391  invcgn 30393   /𝑔 cgs 30394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-grpo 30395  df-gid 30396  df-ginv 30397  df-gdiv 30398
This theorem is referenced by:  grpodivcl  30441
  Copyright terms: Public domain W3C validator