Proof of Theorem grpoinvop
Step | Hyp | Ref
| Expression |
1 | | simp1 1170 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ GrpOp) |
2 | | simp2 1171 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
3 | | simp3 1172 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) |
4 | | grpasscan1.1 |
. . . . . . 7
⊢ 𝑋 = ran 𝐺 |
5 | | grpasscan1.2 |
. . . . . . 7
⊢ 𝑁 = (inv‘𝐺) |
6 | 4, 5 | grpoinvcl 27930 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ 𝑋) |
7 | 6 | 3adant2 1165 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ 𝑋) |
8 | 4, 5 | grpoinvcl 27930 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
9 | 8 | 3adant3 1166 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
10 | 4 | grpocl 27906 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐵) ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋) → ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ∈ 𝑋) |
11 | 1, 7, 9, 10 | syl3anc 1494 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ∈ 𝑋) |
12 | 4 | grpoass 27909 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (𝐴𝐺(𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))))) |
13 | 1, 2, 3, 11, 12 | syl13anc 1495 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (𝐴𝐺(𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))))) |
14 | | eqid 2825 |
. . . . . . . 8
⊢
(GId‘𝐺) =
(GId‘𝐺) |
15 | 4, 14, 5 | grporinv 27933 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺(𝑁‘𝐵)) = (GId‘𝐺)) |
16 | 15 | 3adant2 1165 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺(𝑁‘𝐵)) = (GId‘𝐺)) |
17 | 16 | oveq1d 6925 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐺(𝑁‘𝐵))𝐺(𝑁‘𝐴)) = ((GId‘𝐺)𝐺(𝑁‘𝐴))) |
18 | 4 | grpoass 27909 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ (𝑁‘𝐵) ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) → ((𝐵𝐺(𝑁‘𝐵))𝐺(𝑁‘𝐴)) = (𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴)))) |
19 | 1, 3, 7, 9, 18 | syl13anc 1495 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐺(𝑁‘𝐵))𝐺(𝑁‘𝐴)) = (𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴)))) |
20 | 4, 14 | grpolid 27922 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
21 | 8, 20 | syldan 585 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
22 | 21 | 3adant3 1166 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
23 | 17, 19, 22 | 3eqtr3d 2869 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (𝑁‘𝐴)) |
24 | 23 | oveq2d 6926 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴)))) = (𝐴𝐺(𝑁‘𝐴))) |
25 | 4, 14, 5 | grporinv 27933 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = (GId‘𝐺)) |
26 | 25 | 3adant3 1166 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = (GId‘𝐺)) |
27 | 13, 24, 26 | 3eqtrd 2865 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (GId‘𝐺)) |
28 | 4 | grpocl 27906 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
29 | 4, 14, 5 | grpoinvid1 27934 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵)) = ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ↔ ((𝐴𝐺𝐵)𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (GId‘𝐺))) |
30 | 1, 28, 11, 29 | syl3anc 1494 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵)) = ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ↔ ((𝐴𝐺𝐵)𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (GId‘𝐺))) |
31 | 27, 30 | mpbird 249 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺𝐵)) = ((𝑁‘𝐵)𝐺(𝑁‘𝐴))) |