Proof of Theorem grpoinvop
| Step | Hyp | Ref
| Expression |
| 1 | | simp1 1136 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ GrpOp) |
| 2 | | simp2 1137 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
| 3 | | simp3 1138 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) |
| 4 | | grpasscan1.1 |
. . . . . . 7
⊢ 𝑋 = ran 𝐺 |
| 5 | | grpasscan1.2 |
. . . . . . 7
⊢ 𝑁 = (inv‘𝐺) |
| 6 | 4, 5 | grpoinvcl 30505 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ 𝑋) |
| 7 | 6 | 3adant2 1131 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) ∈ 𝑋) |
| 8 | 4, 5 | grpoinvcl 30505 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
| 9 | 8 | 3adant3 1132 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) |
| 10 | 4 | grpocl 30481 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐵) ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋) → ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ∈ 𝑋) |
| 11 | 1, 7, 9, 10 | syl3anc 1373 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ∈ 𝑋) |
| 12 | 4 | grpoass 30484 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (𝐴𝐺(𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))))) |
| 13 | 1, 2, 3, 11, 12 | syl13anc 1374 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (𝐴𝐺(𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))))) |
| 14 | | eqid 2735 |
. . . . . . . 8
⊢
(GId‘𝐺) =
(GId‘𝐺) |
| 15 | 4, 14, 5 | grporinv 30508 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺(𝑁‘𝐵)) = (GId‘𝐺)) |
| 16 | 15 | 3adant2 1131 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺(𝑁‘𝐵)) = (GId‘𝐺)) |
| 17 | 16 | oveq1d 7420 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐺(𝑁‘𝐵))𝐺(𝑁‘𝐴)) = ((GId‘𝐺)𝐺(𝑁‘𝐴))) |
| 18 | 4 | grpoass 30484 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ (𝐵 ∈ 𝑋 ∧ (𝑁‘𝐵) ∈ 𝑋 ∧ (𝑁‘𝐴) ∈ 𝑋)) → ((𝐵𝐺(𝑁‘𝐵))𝐺(𝑁‘𝐴)) = (𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴)))) |
| 19 | 1, 3, 7, 9, 18 | syl13anc 1374 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐵𝐺(𝑁‘𝐵))𝐺(𝑁‘𝐴)) = (𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴)))) |
| 20 | 4, 14 | grpolid 30497 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝑁‘𝐴) ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
| 21 | 8, 20 | syldan 591 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
| 22 | 21 | 3adant3 1132 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑁‘𝐴)) = (𝑁‘𝐴)) |
| 23 | 17, 19, 22 | 3eqtr3d 2778 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (𝑁‘𝐴)) |
| 24 | 23 | oveq2d 7421 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(𝐵𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴)))) = (𝐴𝐺(𝑁‘𝐴))) |
| 25 | 4, 14, 5 | grporinv 30508 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = (GId‘𝐺)) |
| 26 | 25 | 3adant3 1132 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = (GId‘𝐺)) |
| 27 | 13, 24, 26 | 3eqtrd 2774 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐺𝐵)𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (GId‘𝐺)) |
| 28 | 4 | grpocl 30481 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| 29 | 4, 14, 5 | grpoinvid1 30509 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵)) = ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ↔ ((𝐴𝐺𝐵)𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (GId‘𝐺))) |
| 30 | 1, 28, 11, 29 | syl3anc 1373 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵)) = ((𝑁‘𝐵)𝐺(𝑁‘𝐴)) ↔ ((𝐴𝐺𝐵)𝐺((𝑁‘𝐵)𝐺(𝑁‘𝐴))) = (GId‘𝐺))) |
| 31 | 27, 30 | mpbird 257 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴𝐺𝐵)) = ((𝑁‘𝐵)𝐺(𝑁‘𝐴))) |