MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinvop Structured version   Visualization version   GIF version

Theorem grpoinvop 30513
Description: The inverse of the group operation reverses the arguments. Lemma 2.2.1(d) of [Herstein] p. 55. (Contributed by NM, 27-Oct-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpasscan1.1 𝑋 = ran 𝐺
grpasscan1.2 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinvop ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) = ((𝑁𝐵)𝐺(𝑁𝐴)))

Proof of Theorem grpoinvop
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐺 ∈ GrpOp)
2 simp2 1137 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
3 simp3 1138 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
4 grpasscan1.1 . . . . . . 7 𝑋 = ran 𝐺
5 grpasscan1.2 . . . . . . 7 𝑁 = (inv‘𝐺)
64, 5grpoinvcl 30504 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝑁𝐵) ∈ 𝑋)
763adant2 1131 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐵) ∈ 𝑋)
84, 5grpoinvcl 30504 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ 𝑋)
983adant3 1132 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁𝐴) ∈ 𝑋)
104grpocl 30480 . . . . 5 ((𝐺 ∈ GrpOp ∧ (𝑁𝐵) ∈ 𝑋 ∧ (𝑁𝐴) ∈ 𝑋) → ((𝑁𝐵)𝐺(𝑁𝐴)) ∈ 𝑋)
111, 7, 9, 10syl3anc 1373 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝐵)𝐺(𝑁𝐴)) ∈ 𝑋)
124grpoass 30483 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝐴𝑋𝐵𝑋 ∧ ((𝑁𝐵)𝐺(𝑁𝐴)) ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (𝐴𝐺(𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴)))))
131, 2, 3, 11, 12syl13anc 1374 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (𝐴𝐺(𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴)))))
14 eqid 2731 . . . . . . . 8 (GId‘𝐺) = (GId‘𝐺)
154, 14, 5grporinv 30507 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐵𝑋) → (𝐵𝐺(𝑁𝐵)) = (GId‘𝐺))
16153adant2 1131 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺(𝑁𝐵)) = (GId‘𝐺))
1716oveq1d 7361 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(𝑁𝐵))𝐺(𝑁𝐴)) = ((GId‘𝐺)𝐺(𝑁𝐴)))
184grpoass 30483 . . . . . 6 ((𝐺 ∈ GrpOp ∧ (𝐵𝑋 ∧ (𝑁𝐵) ∈ 𝑋 ∧ (𝑁𝐴) ∈ 𝑋)) → ((𝐵𝐺(𝑁𝐵))𝐺(𝑁𝐴)) = (𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴))))
191, 3, 7, 9, 18syl13anc 1374 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐵𝐺(𝑁𝐵))𝐺(𝑁𝐴)) = (𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴))))
204, 14grpolid 30496 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ (𝑁𝐴) ∈ 𝑋) → ((GId‘𝐺)𝐺(𝑁𝐴)) = (𝑁𝐴))
218, 20syldan 591 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((GId‘𝐺)𝐺(𝑁𝐴)) = (𝑁𝐴))
22213adant3 1132 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((GId‘𝐺)𝐺(𝑁𝐴)) = (𝑁𝐴))
2317, 19, 223eqtr3d 2774 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (𝑁𝐴))
2423oveq2d 7362 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝐵𝐺((𝑁𝐵)𝐺(𝑁𝐴)))) = (𝐴𝐺(𝑁𝐴)))
254, 14, 5grporinv 30507 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺(𝑁𝐴)) = (GId‘𝐺))
26253adant3 1132 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺(𝑁𝐴)) = (GId‘𝐺))
2713, 24, 263eqtrd 2770 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐺𝐵)𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (GId‘𝐺))
284grpocl 30480 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
294, 14, 5grpoinvid1 30508 . . 3 ((𝐺 ∈ GrpOp ∧ (𝐴𝐺𝐵) ∈ 𝑋 ∧ ((𝑁𝐵)𝐺(𝑁𝐴)) ∈ 𝑋) → ((𝑁‘(𝐴𝐺𝐵)) = ((𝑁𝐵)𝐺(𝑁𝐴)) ↔ ((𝐴𝐺𝐵)𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (GId‘𝐺)))
301, 28, 11, 29syl3anc 1373 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → ((𝑁‘(𝐴𝐺𝐵)) = ((𝑁𝐵)𝐺(𝑁𝐴)) ↔ ((𝐴𝐺𝐵)𝐺((𝑁𝐵)𝐺(𝑁𝐴))) = (GId‘𝐺)))
3127, 30mpbird 257 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴𝐺𝐵)) = ((𝑁𝐵)𝐺(𝑁𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  ran crn 5615  cfv 6481  (class class class)co 7346  GrpOpcgr 30469  GIdcgi 30470  invcgn 30471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-grpo 30473  df-gid 30474  df-ginv 30475
This theorem is referenced by:  grpoinvdiv  30517
  Copyright terms: Public domain W3C validator