MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvgcl Structured version   Visualization version   GIF version

Theorem nvgcl 30606
Description: Closure law for the vector addition (group) operation of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvgcl.1 𝑋 = (BaseSet‘𝑈)
nvgcl.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
nvgcl ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)

Proof of Theorem nvgcl
StepHypRef Expression
1 nvgcl.2 . . 3 𝐺 = ( +𝑣𝑈)
21nvgrp 30603 . 2 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvgcl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
43, 1bafval 30590 . . 3 𝑋 = ran 𝐺
54grpocl 30486 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
62, 5syl3an1 1163 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  GrpOpcgr 30475  NrmCVeccnv 30570   +𝑣 cpv 30571  BaseSetcba 30572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-1st 7993  df-2nd 7994  df-grpo 30479  df-ablo 30531  df-vc 30545  df-nv 30578  df-va 30581  df-ba 30582  df-sm 30583  df-0v 30584  df-nmcv 30586
This theorem is referenced by:  nvmf  30631  nvpncan2  30639  nvaddsub4  30643  nvdif  30652  nvpi  30653  nvabs  30658  imsmetlem  30676  vacn  30680  ipval2lem2  30690  4ipval2  30694  lnocoi  30743  0lno  30776  blocnilem  30790  ip0i  30811  ip1ilem  30812  ip2i  30814  ipdirilem  30815  ipasslem10  30825  dipdi  30829  ip2dii  30830  pythi  30836  ipblnfi  30841  ubthlem2  30857  minvecolem2  30861  hhshsslem2  31254
  Copyright terms: Public domain W3C validator