| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvgcl | Structured version Visualization version GIF version | ||
| Description: Closure law for the vector addition (group) operation of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvgcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvgcl.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| nvgcl | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvgcl.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | 1 | nvgrp 30553 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
| 3 | nvgcl.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | 3, 1 | bafval 30540 | . . 3 ⊢ 𝑋 = ran 𝐺 |
| 5 | 4 | grpocl 30436 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| 6 | 2, 5 | syl3an1 1163 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 GrpOpcgr 30425 NrmCVeccnv 30520 +𝑣 cpv 30521 BaseSetcba 30522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-1st 7971 df-2nd 7972 df-grpo 30429 df-ablo 30481 df-vc 30495 df-nv 30528 df-va 30531 df-ba 30532 df-sm 30533 df-0v 30534 df-nmcv 30536 |
| This theorem is referenced by: nvmf 30581 nvpncan2 30589 nvaddsub4 30593 nvdif 30602 nvpi 30603 nvabs 30608 imsmetlem 30626 vacn 30630 ipval2lem2 30640 4ipval2 30644 lnocoi 30693 0lno 30726 blocnilem 30740 ip0i 30761 ip1ilem 30762 ip2i 30764 ipdirilem 30765 ipasslem10 30775 dipdi 30779 ip2dii 30780 pythi 30786 ipblnfi 30791 ubthlem2 30807 minvecolem2 30811 hhshsslem2 31204 |
| Copyright terms: Public domain | W3C validator |