MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvgcl Structured version   Visualization version   GIF version

Theorem nvgcl 30564
Description: Closure law for the vector addition (group) operation of a normed complex vector space. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvgcl.1 𝑋 = (BaseSet‘𝑈)
nvgcl.2 𝐺 = ( +𝑣𝑈)
Assertion
Ref Expression
nvgcl ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)

Proof of Theorem nvgcl
StepHypRef Expression
1 nvgcl.2 . . 3 𝐺 = ( +𝑣𝑈)
21nvgrp 30561 . 2 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvgcl.1 . . . 4 𝑋 = (BaseSet‘𝑈)
43, 1bafval 30548 . . 3 𝑋 = ran 𝐺
54grpocl 30444 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
62, 5syl3an1 1163 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐺𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  GrpOpcgr 30433  NrmCVeccnv 30528   +𝑣 cpv 30529  BaseSetcba 30530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-1st 7924  df-2nd 7925  df-grpo 30437  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-nmcv 30544
This theorem is referenced by:  nvmf  30589  nvpncan2  30597  nvaddsub4  30601  nvdif  30610  nvpi  30611  nvabs  30616  imsmetlem  30634  vacn  30638  ipval2lem2  30648  4ipval2  30652  lnocoi  30701  0lno  30734  blocnilem  30748  ip0i  30769  ip1ilem  30770  ip2i  30772  ipdirilem  30773  ipasslem10  30783  dipdi  30787  ip2dii  30788  pythi  30794  ipblnfi  30799  ubthlem2  30815  minvecolem2  30819  hhshsslem2  31212
  Copyright terms: Public domain W3C validator