Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grpsubcld Structured version   Visualization version   GIF version

Theorem grpsubcld 33018
Description: Closure of group subtraction. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
grpsubcld.b 𝐵 = (Base‘𝐺)
grpsubcld.m = (-g𝐺)
grpsubcld.g (𝜑𝐺 ∈ Grp)
grpsubcld.x (𝜑𝑋𝐵)
grpsubcld.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpsubcld (𝜑 → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem grpsubcld
StepHypRef Expression
1 grpsubcld.g . 2 (𝜑𝐺 ∈ Grp)
2 grpsubcld.x . 2 (𝜑𝑋𝐵)
3 grpsubcld.y . 2 (𝜑𝑌𝐵)
4 grpsubcld.b . . 3 𝐵 = (Base‘𝐺)
5 grpsubcld.m . . 3 = (-g𝐺)
64, 5grpsubcl 19054 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
71, 2, 3, 6syl3anc 1371 1 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6568  (class class class)co 7443  Basecbs 17252  Grpcgrp 18967  -gcsg 18969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-fv 6576  df-riota 7399  df-ov 7446  df-oprab 7447  df-mpo 7448  df-1st 8024  df-2nd 8025  df-0g 17495  df-mgm 18672  df-sgrp 18751  df-mnd 18767  df-grp 18970  df-minusg 18971  df-sbg 18972
This theorem is referenced by:  assalactf1o  33640
  Copyright terms: Public domain W3C validator