Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assalactf1o Structured version   Visualization version   GIF version

Theorem assalactf1o 33659
Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is bijective. See also lactlmhm 33658. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
lactlmhm.b 𝐵 = (Base‘𝐴)
lactlmhm.m · = (.r𝐴)
lactlmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
lactlmhm.a (𝜑𝐴 ∈ AssAlg)
assalactf1o.1 𝐸 = (RLReg‘𝐴)
assalactf1o.k 𝐾 = (Scalar‘𝐴)
assalactf1o.2 (𝜑𝐾 ∈ DivRing)
assalactf1o.3 (𝜑 → (dim‘𝐴) ∈ ℕ0)
assalactf1o.c (𝜑𝐶𝐸)
Assertion
Ref Expression
assalactf1o (𝜑𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥, ·   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝐾(𝑥)

Proof of Theorem assalactf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lactlmhm.b . 2 𝐵 = (Base‘𝐴)
2 lactlmhm.a . . . 4 (𝜑𝐴 ∈ AssAlg)
3 assalmod 21807 . . . 4 (𝐴 ∈ AssAlg → 𝐴 ∈ LMod)
42, 3syl 17 . . 3 (𝜑𝐴 ∈ LMod)
5 assalactf1o.2 . . 3 (𝜑𝐾 ∈ DivRing)
6 assalactf1o.k . . . 4 𝐾 = (Scalar‘𝐴)
76islvec 21048 . . 3 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ 𝐾 ∈ DivRing))
84, 5, 7sylanbrc 583 . 2 (𝜑𝐴 ∈ LVec)
9 assalactf1o.3 . 2 (𝜑 → (dim‘𝐴) ∈ ℕ0)
10 lactlmhm.m . . 3 · = (.r𝐴)
11 lactlmhm.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
12 assalactf1o.1 . . . . 5 𝐸 = (RLReg‘𝐴)
1312, 1rrgss 20627 . . . 4 𝐸𝐵
14 assalactf1o.c . . . 4 (𝜑𝐶𝐸)
1513, 14sselid 3929 . . 3 (𝜑𝐶𝐵)
161, 10, 11, 2, 15lactlmhm 33658 . 2 (𝜑𝐹 ∈ (𝐴 LMHom 𝐴))
17 assaring 21808 . . . . . . 7 (𝐴 ∈ AssAlg → 𝐴 ∈ Ring)
182, 17syl 17 . . . . . 6 (𝜑𝐴 ∈ Ring)
1918adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐴 ∈ Ring)
2015adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐶𝐵)
21 simpr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
221, 10, 19, 20, 21ringcld 20188 . . . 4 ((𝜑𝑥𝐵) → (𝐶 · 𝑥) ∈ 𝐵)
2322ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐵 (𝐶 · 𝑥) ∈ 𝐵)
2418ringgrpd 20170 . . . . . . . 8 (𝜑𝐴 ∈ Grp)
2524ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Grp)
2621ad2antrr 726 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥𝐵)
27 simplr 768 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑦𝐵)
2814ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶𝐸)
29 eqid 2733 . . . . . . . . 9 (-g𝐴) = (-g𝐴)
301, 29, 25, 26, 27grpsubcld 33032 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g𝐴)𝑦) ∈ 𝐵)
3118ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Ring)
3215ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶𝐵)
331, 10, 29, 31, 32, 26, 27ringsubdi 20235 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g𝐴)𝑦)) = ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)))
3422ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) ∈ 𝐵)
351, 10, 31, 32, 27ringcld 20188 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑦) ∈ 𝐵)
36 simpr 484 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) = (𝐶 · 𝑦))
37 eqid 2733 . . . . . . . . . . . 12 (0g𝐴) = (0g𝐴)
381, 37, 29grpsubeq0 18949 . . . . . . . . . . 11 ((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) → (((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴) ↔ (𝐶 · 𝑥) = (𝐶 · 𝑦)))
3938biimpar 477 . . . . . . . . . 10 (((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴))
4025, 34, 35, 36, 39syl31anc 1375 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴))
4133, 40eqtrd 2768 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴))
4212, 1, 10, 37rrgeq0i 20624 . . . . . . . . 9 ((𝐶𝐸 ∧ (𝑥(-g𝐴)𝑦) ∈ 𝐵) → ((𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴) → (𝑥(-g𝐴)𝑦) = (0g𝐴)))
4342imp 406 . . . . . . . 8 (((𝐶𝐸 ∧ (𝑥(-g𝐴)𝑦) ∈ 𝐵) ∧ (𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴)) → (𝑥(-g𝐴)𝑦) = (0g𝐴))
4428, 30, 41, 43syl21anc 837 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g𝐴)𝑦) = (0g𝐴))
451, 37, 29grpsubeq0 18949 . . . . . . . 8 ((𝐴 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(-g𝐴)𝑦) = (0g𝐴) ↔ 𝑥 = 𝑦))
4645biimpa 476 . . . . . . 7 (((𝐴 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) ∧ (𝑥(-g𝐴)𝑦) = (0g𝐴)) → 𝑥 = 𝑦)
4725, 26, 27, 44, 46syl31anc 1375 . . . . . 6 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 = 𝑦)
4847ex 412 . . . . 5 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
4948anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
5049ralrimivva 3177 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
51 oveq2 7363 . . . 4 (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦))
5211, 51f1mpt 7204 . . 3 (𝐹:𝐵1-1𝐵 ↔ (∀𝑥𝐵 (𝐶 · 𝑥) ∈ 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)))
5323, 50, 52sylanbrc 583 . 2 (𝜑𝐹:𝐵1-1𝐵)
541, 8, 9, 16, 53lvecendof1f1o 33657 1 (𝜑𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3049  cmpt 5176  1-1wf1 6486  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  0cn0 12391  Basecbs 17130  .rcmulr 17172  Scalarcsca 17174  0gc0g 17353  Grpcgrp 18856  -gcsg 18858  Ringcrg 20161  RLRegcrlreg 20616  DivRingcdr 20654  LModclmod 20803  LVecclvec 21046  AssAlgcasa 21797  dimcldim 33622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-reg 9488  ax-inf2 9541  ax-ac2 10364  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-rpss 7665  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-map 8761  df-ixp 8831  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-fsupp 9256  df-sup 9336  df-oi 9406  df-r1 9667  df-rank 9668  df-dju 9804  df-card 9842  df-acn 9845  df-ac 10017  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-4 12200  df-5 12201  df-6 12202  df-7 12203  df-8 12204  df-9 12205  df-n0 12392  df-xnn0 12465  df-z 12479  df-dec 12599  df-uz 12743  df-xadd 13022  df-fz 13418  df-fzo 13565  df-seq 13919  df-hash 14248  df-struct 17068  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-sca 17187  df-vsca 17188  df-ip 17189  df-tset 17190  df-ple 17191  df-ocomp 17192  df-ds 17193  df-hom 17195  df-cco 17196  df-0g 17355  df-gsum 17356  df-prds 17361  df-pws 17363  df-mre 17498  df-mrc 17499  df-mri 17500  df-acs 17501  df-proset 18210  df-drs 18211  df-poset 18229  df-ipo 18444  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-mhm 18701  df-submnd 18702  df-grp 18859  df-minusg 18860  df-sbg 18861  df-mulg 18991  df-subg 19046  df-ghm 19135  df-cntz 19239  df-lsm 19558  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-nzr 20438  df-subrg 20495  df-rlreg 20619  df-drng 20656  df-lmod 20805  df-lss 20875  df-lsp 20915  df-lmhm 20966  df-lmim 20967  df-lbs 21019  df-lvec 21047  df-sra 21117  df-rgmod 21118  df-dsmm 21679  df-frlm 21694  df-uvc 21730  df-lindf 21753  df-linds 21754  df-assa 21800  df-dim 33623
This theorem is referenced by:  assarrginv  33660
  Copyright terms: Public domain W3C validator