| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assalactf1o | Structured version Visualization version GIF version | ||
| Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is bijective. See also lactlmhm 33637. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| lactlmhm.b | ⊢ 𝐵 = (Base‘𝐴) |
| lactlmhm.m | ⊢ · = (.r‘𝐴) |
| lactlmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) |
| lactlmhm.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| assalactf1o.1 | ⊢ 𝐸 = (RLReg‘𝐴) |
| assalactf1o.k | ⊢ 𝐾 = (Scalar‘𝐴) |
| assalactf1o.2 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| assalactf1o.3 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
| assalactf1o.c | ⊢ (𝜑 → 𝐶 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| assalactf1o | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lactlmhm.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 2 | lactlmhm.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 3 | assalmod 21790 | . . . 4 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ LMod) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ LMod) |
| 5 | assalactf1o.2 | . . 3 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 6 | assalactf1o.k | . . . 4 ⊢ 𝐾 = (Scalar‘𝐴) | |
| 7 | 6 | islvec 21031 | . . 3 ⊢ (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ 𝐾 ∈ DivRing)) |
| 8 | 4, 5, 7 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐴 ∈ LVec) |
| 9 | assalactf1o.3 | . 2 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
| 10 | lactlmhm.m | . . 3 ⊢ · = (.r‘𝐴) | |
| 11 | lactlmhm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) | |
| 12 | assalactf1o.1 | . . . . 5 ⊢ 𝐸 = (RLReg‘𝐴) | |
| 13 | 12, 1 | rrgss 20610 | . . . 4 ⊢ 𝐸 ⊆ 𝐵 |
| 14 | assalactf1o.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐸) | |
| 15 | 13, 14 | sselid 3930 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 16 | 1, 10, 11, 2, 15 | lactlmhm 33637 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| 17 | assaring 21791 | . . . . . . 7 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 18 | 2, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ Ring) |
| 20 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 21 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 22 | 1, 10, 19, 20, 21 | ringcld 20171 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐶 · 𝑥) ∈ 𝐵) |
| 23 | 22 | ralrimiva 3122 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐶 · 𝑥) ∈ 𝐵) |
| 24 | 18 | ringgrpd 20153 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ Grp) |
| 25 | 24 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Grp) |
| 26 | 21 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 ∈ 𝐵) |
| 27 | simplr 768 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑦 ∈ 𝐵) | |
| 28 | 14 | ad3antrrr 730 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶 ∈ 𝐸) |
| 29 | eqid 2730 | . . . . . . . . 9 ⊢ (-g‘𝐴) = (-g‘𝐴) | |
| 30 | 1, 29, 25, 26, 27 | grpsubcld 33011 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) |
| 31 | 18 | ad3antrrr 730 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Ring) |
| 32 | 15 | ad3antrrr 730 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶 ∈ 𝐵) |
| 33 | 1, 10, 29, 31, 32, 26, 27 | ringsubdi 20218 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g‘𝐴)𝑦)) = ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦))) |
| 34 | 22 | ad2antrr 726 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) ∈ 𝐵) |
| 35 | 1, 10, 31, 32, 27 | ringcld 20171 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑦) ∈ 𝐵) |
| 36 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) = (𝐶 · 𝑦)) | |
| 37 | eqid 2730 | . . . . . . . . . . . 12 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
| 38 | 1, 37, 29 | grpsubeq0 18931 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) → (((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴) ↔ (𝐶 · 𝑥) = (𝐶 · 𝑦))) |
| 39 | 38 | biimpar 477 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴)) |
| 40 | 25, 34, 35, 36, 39 | syl31anc 1375 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴)) |
| 41 | 33, 40 | eqtrd 2765 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴)) |
| 42 | 12, 1, 10, 37 | rrgeq0i 20607 | . . . . . . . . 9 ⊢ ((𝐶 ∈ 𝐸 ∧ (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) → ((𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴))) |
| 43 | 42 | imp 406 | . . . . . . . 8 ⊢ (((𝐶 ∈ 𝐸 ∧ (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) ∧ (𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴)) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) |
| 44 | 28, 30, 41, 43 | syl21anc 837 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) |
| 45 | 1, 37, 29 | grpsubeq0 18931 | . . . . . . . 8 ⊢ ((𝐴 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥(-g‘𝐴)𝑦) = (0g‘𝐴) ↔ 𝑥 = 𝑦)) |
| 46 | 45 | biimpa 476 | . . . . . . 7 ⊢ (((𝐴 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) → 𝑥 = 𝑦) |
| 47 | 25, 26, 27, 44, 46 | syl31anc 1375 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 = 𝑦) |
| 48 | 47 | ex 412 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 49 | 48 | anasss 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 50 | 49 | ralrimivva 3173 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 51 | oveq2 7349 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦)) | |
| 52 | 11, 51 | f1mpt 7190 | . . 3 ⊢ (𝐹:𝐵–1-1→𝐵 ↔ (∀𝑥 ∈ 𝐵 (𝐶 · 𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))) |
| 53 | 23, 50, 52 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐵) |
| 54 | 1, 8, 9, 16, 53 | lvecendof1f1o 33636 | 1 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ↦ cmpt 5170 –1-1→wf1 6474 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 ℕ0cn0 12373 Basecbs 17112 .rcmulr 17154 Scalarcsca 17156 0gc0g 17335 Grpcgrp 18838 -gcsg 18840 Ringcrg 20144 RLRegcrlreg 20599 DivRingcdr 20637 LModclmod 20786 LVecclvec 21029 AssAlgcasa 21780 dimcldim 33601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-ac2 10346 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-r1 9649 df-rank 9650 df-dju 9786 df-card 9824 df-acn 9827 df-ac 9999 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-xnn0 12447 df-z 12461 df-dec 12581 df-uz 12725 df-xadd 13004 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ocomp 17174 df-ds 17175 df-hom 17177 df-cco 17178 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-mri 17482 df-acs 17483 df-proset 18192 df-drs 18193 df-poset 18211 df-ipo 18426 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-sbg 18843 df-mulg 18973 df-subg 19028 df-ghm 19118 df-cntz 19222 df-lsm 19541 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-oppr 20248 df-dvdsr 20268 df-unit 20269 df-invr 20299 df-nzr 20421 df-subrg 20478 df-rlreg 20602 df-drng 20639 df-lmod 20788 df-lss 20858 df-lsp 20898 df-lmhm 20949 df-lmim 20950 df-lbs 21002 df-lvec 21030 df-sra 21100 df-rgmod 21101 df-dsmm 21662 df-frlm 21677 df-uvc 21713 df-lindf 21736 df-linds 21737 df-assa 21783 df-dim 33602 |
| This theorem is referenced by: assarrginv 33639 |
| Copyright terms: Public domain | W3C validator |