| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assalactf1o | Structured version Visualization version GIF version | ||
| Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is bijective. See also lactlmhm 33606. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| lactlmhm.b | ⊢ 𝐵 = (Base‘𝐴) |
| lactlmhm.m | ⊢ · = (.r‘𝐴) |
| lactlmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) |
| lactlmhm.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| assalactf1o.1 | ⊢ 𝐸 = (RLReg‘𝐴) |
| assalactf1o.k | ⊢ 𝐾 = (Scalar‘𝐴) |
| assalactf1o.2 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| assalactf1o.3 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
| assalactf1o.c | ⊢ (𝜑 → 𝐶 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| assalactf1o | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lactlmhm.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 2 | lactlmhm.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 3 | assalmod 21785 | . . . 4 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ LMod) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ LMod) |
| 5 | assalactf1o.2 | . . 3 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 6 | assalactf1o.k | . . . 4 ⊢ 𝐾 = (Scalar‘𝐴) | |
| 7 | 6 | islvec 21026 | . . 3 ⊢ (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ 𝐾 ∈ DivRing)) |
| 8 | 4, 5, 7 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐴 ∈ LVec) |
| 9 | assalactf1o.3 | . 2 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
| 10 | lactlmhm.m | . . 3 ⊢ · = (.r‘𝐴) | |
| 11 | lactlmhm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) | |
| 12 | assalactf1o.1 | . . . . 5 ⊢ 𝐸 = (RLReg‘𝐴) | |
| 13 | 12, 1 | rrgss 20605 | . . . 4 ⊢ 𝐸 ⊆ 𝐵 |
| 14 | assalactf1o.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐸) | |
| 15 | 13, 14 | sselid 3935 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 16 | 1, 10, 11, 2, 15 | lactlmhm 33606 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| 17 | assaring 21786 | . . . . . . 7 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 18 | 2, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ Ring) |
| 20 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 21 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 22 | 1, 10, 19, 20, 21 | ringcld 20163 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐶 · 𝑥) ∈ 𝐵) |
| 23 | 22 | ralrimiva 3121 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐶 · 𝑥) ∈ 𝐵) |
| 24 | 18 | ringgrpd 20145 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ Grp) |
| 25 | 24 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Grp) |
| 26 | 21 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 ∈ 𝐵) |
| 27 | simplr 768 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑦 ∈ 𝐵) | |
| 28 | 14 | ad3antrrr 730 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶 ∈ 𝐸) |
| 29 | eqid 2729 | . . . . . . . . 9 ⊢ (-g‘𝐴) = (-g‘𝐴) | |
| 30 | 1, 29, 25, 26, 27 | grpsubcld 33007 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) |
| 31 | 18 | ad3antrrr 730 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Ring) |
| 32 | 15 | ad3antrrr 730 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶 ∈ 𝐵) |
| 33 | 1, 10, 29, 31, 32, 26, 27 | ringsubdi 20210 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g‘𝐴)𝑦)) = ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦))) |
| 34 | 22 | ad2antrr 726 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) ∈ 𝐵) |
| 35 | 1, 10, 31, 32, 27 | ringcld 20163 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑦) ∈ 𝐵) |
| 36 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) = (𝐶 · 𝑦)) | |
| 37 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
| 38 | 1, 37, 29 | grpsubeq0 18923 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) → (((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴) ↔ (𝐶 · 𝑥) = (𝐶 · 𝑦))) |
| 39 | 38 | biimpar 477 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴)) |
| 40 | 25, 34, 35, 36, 39 | syl31anc 1375 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴)) |
| 41 | 33, 40 | eqtrd 2764 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴)) |
| 42 | 12, 1, 10, 37 | rrgeq0i 20602 | . . . . . . . . 9 ⊢ ((𝐶 ∈ 𝐸 ∧ (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) → ((𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴))) |
| 43 | 42 | imp 406 | . . . . . . . 8 ⊢ (((𝐶 ∈ 𝐸 ∧ (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) ∧ (𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴)) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) |
| 44 | 28, 30, 41, 43 | syl21anc 837 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) |
| 45 | 1, 37, 29 | grpsubeq0 18923 | . . . . . . . 8 ⊢ ((𝐴 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥(-g‘𝐴)𝑦) = (0g‘𝐴) ↔ 𝑥 = 𝑦)) |
| 46 | 45 | biimpa 476 | . . . . . . 7 ⊢ (((𝐴 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) → 𝑥 = 𝑦) |
| 47 | 25, 26, 27, 44, 46 | syl31anc 1375 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 = 𝑦) |
| 48 | 47 | ex 412 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 49 | 48 | anasss 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 50 | 49 | ralrimivva 3172 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 51 | oveq2 7361 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦)) | |
| 52 | 11, 51 | f1mpt 7202 | . . 3 ⊢ (𝐹:𝐵–1-1→𝐵 ↔ (∀𝑥 ∈ 𝐵 (𝐶 · 𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))) |
| 53 | 23, 50, 52 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐵) |
| 54 | 1, 8, 9, 16, 53 | lvecendof1f1o 33605 | 1 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5176 –1-1→wf1 6483 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ℕ0cn0 12402 Basecbs 17138 .rcmulr 17180 Scalarcsca 17182 0gc0g 17361 Grpcgrp 18830 -gcsg 18832 Ringcrg 20136 RLRegcrlreg 20594 DivRingcdr 20632 LModclmod 20781 LVecclvec 21024 AssAlgcasa 21775 dimcldim 33570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-rpss 7663 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-r1 9679 df-rank 9680 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-xadd 13033 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ocomp 17200 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-mri 17508 df-acs 17509 df-proset 18218 df-drs 18219 df-poset 18237 df-ipo 18452 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-lsm 19533 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-nzr 20416 df-subrg 20473 df-rlreg 20597 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lmhm 20944 df-lmim 20945 df-lbs 20997 df-lvec 21025 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-uvc 21708 df-lindf 21731 df-linds 21732 df-assa 21778 df-dim 33571 |
| This theorem is referenced by: assarrginv 33608 |
| Copyright terms: Public domain | W3C validator |