| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assalactf1o | Structured version Visualization version GIF version | ||
| Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is bijective. See also lactlmhm 33658. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| lactlmhm.b | ⊢ 𝐵 = (Base‘𝐴) |
| lactlmhm.m | ⊢ · = (.r‘𝐴) |
| lactlmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) |
| lactlmhm.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| assalactf1o.1 | ⊢ 𝐸 = (RLReg‘𝐴) |
| assalactf1o.k | ⊢ 𝐾 = (Scalar‘𝐴) |
| assalactf1o.2 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| assalactf1o.3 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
| assalactf1o.c | ⊢ (𝜑 → 𝐶 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| assalactf1o | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lactlmhm.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 2 | lactlmhm.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 3 | assalmod 21807 | . . . 4 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ LMod) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ LMod) |
| 5 | assalactf1o.2 | . . 3 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 6 | assalactf1o.k | . . . 4 ⊢ 𝐾 = (Scalar‘𝐴) | |
| 7 | 6 | islvec 21048 | . . 3 ⊢ (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ 𝐾 ∈ DivRing)) |
| 8 | 4, 5, 7 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐴 ∈ LVec) |
| 9 | assalactf1o.3 | . 2 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
| 10 | lactlmhm.m | . . 3 ⊢ · = (.r‘𝐴) | |
| 11 | lactlmhm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) | |
| 12 | assalactf1o.1 | . . . . 5 ⊢ 𝐸 = (RLReg‘𝐴) | |
| 13 | 12, 1 | rrgss 20627 | . . . 4 ⊢ 𝐸 ⊆ 𝐵 |
| 14 | assalactf1o.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐸) | |
| 15 | 13, 14 | sselid 3929 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 16 | 1, 10, 11, 2, 15 | lactlmhm 33658 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| 17 | assaring 21808 | . . . . . . 7 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 18 | 2, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ Ring) |
| 20 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 21 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 22 | 1, 10, 19, 20, 21 | ringcld 20188 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐶 · 𝑥) ∈ 𝐵) |
| 23 | 22 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐶 · 𝑥) ∈ 𝐵) |
| 24 | 18 | ringgrpd 20170 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ Grp) |
| 25 | 24 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Grp) |
| 26 | 21 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 ∈ 𝐵) |
| 27 | simplr 768 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑦 ∈ 𝐵) | |
| 28 | 14 | ad3antrrr 730 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶 ∈ 𝐸) |
| 29 | eqid 2733 | . . . . . . . . 9 ⊢ (-g‘𝐴) = (-g‘𝐴) | |
| 30 | 1, 29, 25, 26, 27 | grpsubcld 33032 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) |
| 31 | 18 | ad3antrrr 730 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Ring) |
| 32 | 15 | ad3antrrr 730 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶 ∈ 𝐵) |
| 33 | 1, 10, 29, 31, 32, 26, 27 | ringsubdi 20235 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g‘𝐴)𝑦)) = ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦))) |
| 34 | 22 | ad2antrr 726 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) ∈ 𝐵) |
| 35 | 1, 10, 31, 32, 27 | ringcld 20188 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑦) ∈ 𝐵) |
| 36 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) = (𝐶 · 𝑦)) | |
| 37 | eqid 2733 | . . . . . . . . . . . 12 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
| 38 | 1, 37, 29 | grpsubeq0 18949 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) → (((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴) ↔ (𝐶 · 𝑥) = (𝐶 · 𝑦))) |
| 39 | 38 | biimpar 477 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴)) |
| 40 | 25, 34, 35, 36, 39 | syl31anc 1375 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴)) |
| 41 | 33, 40 | eqtrd 2768 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴)) |
| 42 | 12, 1, 10, 37 | rrgeq0i 20624 | . . . . . . . . 9 ⊢ ((𝐶 ∈ 𝐸 ∧ (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) → ((𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴))) |
| 43 | 42 | imp 406 | . . . . . . . 8 ⊢ (((𝐶 ∈ 𝐸 ∧ (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) ∧ (𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴)) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) |
| 44 | 28, 30, 41, 43 | syl21anc 837 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) |
| 45 | 1, 37, 29 | grpsubeq0 18949 | . . . . . . . 8 ⊢ ((𝐴 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥(-g‘𝐴)𝑦) = (0g‘𝐴) ↔ 𝑥 = 𝑦)) |
| 46 | 45 | biimpa 476 | . . . . . . 7 ⊢ (((𝐴 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) → 𝑥 = 𝑦) |
| 47 | 25, 26, 27, 44, 46 | syl31anc 1375 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 = 𝑦) |
| 48 | 47 | ex 412 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 49 | 48 | anasss 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 50 | 49 | ralrimivva 3177 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 51 | oveq2 7363 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦)) | |
| 52 | 11, 51 | f1mpt 7204 | . . 3 ⊢ (𝐹:𝐵–1-1→𝐵 ↔ (∀𝑥 ∈ 𝐵 (𝐶 · 𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))) |
| 53 | 23, 50, 52 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐵) |
| 54 | 1, 8, 9, 16, 53 | lvecendof1f1o 33657 | 1 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ↦ cmpt 5176 –1-1→wf1 6486 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 ℕ0cn0 12391 Basecbs 17130 .rcmulr 17172 Scalarcsca 17174 0gc0g 17353 Grpcgrp 18856 -gcsg 18858 Ringcrg 20161 RLRegcrlreg 20616 DivRingcdr 20654 LModclmod 20803 LVecclvec 21046 AssAlgcasa 21797 dimcldim 33622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-reg 9488 ax-inf2 9541 ax-ac2 10364 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-rpss 7665 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-ixp 8831 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-fsupp 9256 df-sup 9336 df-oi 9406 df-r1 9667 df-rank 9668 df-dju 9804 df-card 9842 df-acn 9845 df-ac 10017 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-xnn0 12465 df-z 12479 df-dec 12599 df-uz 12743 df-xadd 13022 df-fz 13418 df-fzo 13565 df-seq 13919 df-hash 14248 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ocomp 17192 df-ds 17193 df-hom 17195 df-cco 17196 df-0g 17355 df-gsum 17356 df-prds 17361 df-pws 17363 df-mre 17498 df-mrc 17499 df-mri 17500 df-acs 17501 df-proset 18210 df-drs 18211 df-poset 18229 df-ipo 18444 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-ghm 19135 df-cntz 19239 df-lsm 19558 df-cmn 19704 df-abl 19705 df-mgp 20069 df-rng 20081 df-ur 20110 df-ring 20163 df-oppr 20265 df-dvdsr 20285 df-unit 20286 df-invr 20316 df-nzr 20438 df-subrg 20495 df-rlreg 20619 df-drng 20656 df-lmod 20805 df-lss 20875 df-lsp 20915 df-lmhm 20966 df-lmim 20967 df-lbs 21019 df-lvec 21047 df-sra 21117 df-rgmod 21118 df-dsmm 21679 df-frlm 21694 df-uvc 21730 df-lindf 21753 df-linds 21754 df-assa 21800 df-dim 33623 |
| This theorem is referenced by: assarrginv 33660 |
| Copyright terms: Public domain | W3C validator |