Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assalactf1o Structured version   Visualization version   GIF version

Theorem assalactf1o 33607
Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is bijective. See also lactlmhm 33606. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
lactlmhm.b 𝐵 = (Base‘𝐴)
lactlmhm.m · = (.r𝐴)
lactlmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
lactlmhm.a (𝜑𝐴 ∈ AssAlg)
assalactf1o.1 𝐸 = (RLReg‘𝐴)
assalactf1o.k 𝐾 = (Scalar‘𝐴)
assalactf1o.2 (𝜑𝐾 ∈ DivRing)
assalactf1o.3 (𝜑 → (dim‘𝐴) ∈ ℕ0)
assalactf1o.c (𝜑𝐶𝐸)
Assertion
Ref Expression
assalactf1o (𝜑𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥, ·   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝐾(𝑥)

Proof of Theorem assalactf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lactlmhm.b . 2 𝐵 = (Base‘𝐴)
2 lactlmhm.a . . . 4 (𝜑𝐴 ∈ AssAlg)
3 assalmod 21785 . . . 4 (𝐴 ∈ AssAlg → 𝐴 ∈ LMod)
42, 3syl 17 . . 3 (𝜑𝐴 ∈ LMod)
5 assalactf1o.2 . . 3 (𝜑𝐾 ∈ DivRing)
6 assalactf1o.k . . . 4 𝐾 = (Scalar‘𝐴)
76islvec 21026 . . 3 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ 𝐾 ∈ DivRing))
84, 5, 7sylanbrc 583 . 2 (𝜑𝐴 ∈ LVec)
9 assalactf1o.3 . 2 (𝜑 → (dim‘𝐴) ∈ ℕ0)
10 lactlmhm.m . . 3 · = (.r𝐴)
11 lactlmhm.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
12 assalactf1o.1 . . . . 5 𝐸 = (RLReg‘𝐴)
1312, 1rrgss 20605 . . . 4 𝐸𝐵
14 assalactf1o.c . . . 4 (𝜑𝐶𝐸)
1513, 14sselid 3935 . . 3 (𝜑𝐶𝐵)
161, 10, 11, 2, 15lactlmhm 33606 . 2 (𝜑𝐹 ∈ (𝐴 LMHom 𝐴))
17 assaring 21786 . . . . . . 7 (𝐴 ∈ AssAlg → 𝐴 ∈ Ring)
182, 17syl 17 . . . . . 6 (𝜑𝐴 ∈ Ring)
1918adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐴 ∈ Ring)
2015adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐶𝐵)
21 simpr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
221, 10, 19, 20, 21ringcld 20163 . . . 4 ((𝜑𝑥𝐵) → (𝐶 · 𝑥) ∈ 𝐵)
2322ralrimiva 3121 . . 3 (𝜑 → ∀𝑥𝐵 (𝐶 · 𝑥) ∈ 𝐵)
2418ringgrpd 20145 . . . . . . . 8 (𝜑𝐴 ∈ Grp)
2524ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Grp)
2621ad2antrr 726 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥𝐵)
27 simplr 768 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑦𝐵)
2814ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶𝐸)
29 eqid 2729 . . . . . . . . 9 (-g𝐴) = (-g𝐴)
301, 29, 25, 26, 27grpsubcld 33007 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g𝐴)𝑦) ∈ 𝐵)
3118ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Ring)
3215ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶𝐵)
331, 10, 29, 31, 32, 26, 27ringsubdi 20210 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g𝐴)𝑦)) = ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)))
3422ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) ∈ 𝐵)
351, 10, 31, 32, 27ringcld 20163 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑦) ∈ 𝐵)
36 simpr 484 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) = (𝐶 · 𝑦))
37 eqid 2729 . . . . . . . . . . . 12 (0g𝐴) = (0g𝐴)
381, 37, 29grpsubeq0 18923 . . . . . . . . . . 11 ((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) → (((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴) ↔ (𝐶 · 𝑥) = (𝐶 · 𝑦)))
3938biimpar 477 . . . . . . . . . 10 (((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴))
4025, 34, 35, 36, 39syl31anc 1375 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴))
4133, 40eqtrd 2764 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴))
4212, 1, 10, 37rrgeq0i 20602 . . . . . . . . 9 ((𝐶𝐸 ∧ (𝑥(-g𝐴)𝑦) ∈ 𝐵) → ((𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴) → (𝑥(-g𝐴)𝑦) = (0g𝐴)))
4342imp 406 . . . . . . . 8 (((𝐶𝐸 ∧ (𝑥(-g𝐴)𝑦) ∈ 𝐵) ∧ (𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴)) → (𝑥(-g𝐴)𝑦) = (0g𝐴))
4428, 30, 41, 43syl21anc 837 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g𝐴)𝑦) = (0g𝐴))
451, 37, 29grpsubeq0 18923 . . . . . . . 8 ((𝐴 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(-g𝐴)𝑦) = (0g𝐴) ↔ 𝑥 = 𝑦))
4645biimpa 476 . . . . . . 7 (((𝐴 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) ∧ (𝑥(-g𝐴)𝑦) = (0g𝐴)) → 𝑥 = 𝑦)
4725, 26, 27, 44, 46syl31anc 1375 . . . . . 6 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 = 𝑦)
4847ex 412 . . . . 5 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
4948anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
5049ralrimivva 3172 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
51 oveq2 7361 . . . 4 (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦))
5211, 51f1mpt 7202 . . 3 (𝐹:𝐵1-1𝐵 ↔ (∀𝑥𝐵 (𝐶 · 𝑥) ∈ 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)))
5323, 50, 52sylanbrc 583 . 2 (𝜑𝐹:𝐵1-1𝐵)
541, 8, 9, 16, 53lvecendof1f1o 33605 1 (𝜑𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cmpt 5176  1-1wf1 6483  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  0cn0 12402  Basecbs 17138  .rcmulr 17180  Scalarcsca 17182  0gc0g 17361  Grpcgrp 18830  -gcsg 18832  Ringcrg 20136  RLRegcrlreg 20594  DivRingcdr 20632  LModclmod 20781  LVecclvec 21024  AssAlgcasa 21775  dimcldim 33570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-reg 9503  ax-inf2 9556  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-rpss 7663  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-tpos 8166  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-r1 9679  df-rank 9680  df-dju 9816  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-xnn0 12476  df-z 12490  df-dec 12610  df-uz 12754  df-xadd 13033  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ocomp 17200  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-mri 17508  df-acs 17509  df-proset 18218  df-drs 18219  df-poset 18237  df-ipo 18452  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-nzr 20416  df-subrg 20473  df-rlreg 20597  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lmim 20945  df-lbs 20997  df-lvec 21025  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-uvc 21708  df-lindf 21731  df-linds 21732  df-assa 21778  df-dim 33571
This theorem is referenced by:  assarrginv  33608
  Copyright terms: Public domain W3C validator