Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assalactf1o Structured version   Visualization version   GIF version

Theorem assalactf1o 33631
Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is bijective. See also lactlmhm 33630. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
lactlmhm.b 𝐵 = (Base‘𝐴)
lactlmhm.m · = (.r𝐴)
lactlmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
lactlmhm.a (𝜑𝐴 ∈ AssAlg)
assalactf1o.1 𝐸 = (RLReg‘𝐴)
assalactf1o.k 𝐾 = (Scalar‘𝐴)
assalactf1o.2 (𝜑𝐾 ∈ DivRing)
assalactf1o.3 (𝜑 → (dim‘𝐴) ∈ ℕ0)
assalactf1o.c (𝜑𝐶𝐸)
Assertion
Ref Expression
assalactf1o (𝜑𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥, ·   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝐾(𝑥)

Proof of Theorem assalactf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lactlmhm.b . 2 𝐵 = (Base‘𝐴)
2 lactlmhm.a . . . 4 (𝜑𝐴 ∈ AssAlg)
3 assalmod 21769 . . . 4 (𝐴 ∈ AssAlg → 𝐴 ∈ LMod)
42, 3syl 17 . . 3 (𝜑𝐴 ∈ LMod)
5 assalactf1o.2 . . 3 (𝜑𝐾 ∈ DivRing)
6 assalactf1o.k . . . 4 𝐾 = (Scalar‘𝐴)
76islvec 21011 . . 3 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ 𝐾 ∈ DivRing))
84, 5, 7sylanbrc 583 . 2 (𝜑𝐴 ∈ LVec)
9 assalactf1o.3 . 2 (𝜑 → (dim‘𝐴) ∈ ℕ0)
10 lactlmhm.m . . 3 · = (.r𝐴)
11 lactlmhm.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
12 assalactf1o.1 . . . . 5 𝐸 = (RLReg‘𝐴)
1312, 1rrgss 20611 . . . 4 𝐸𝐵
14 assalactf1o.c . . . 4 (𝜑𝐶𝐸)
1513, 14sselid 3944 . . 3 (𝜑𝐶𝐵)
161, 10, 11, 2, 15lactlmhm 33630 . 2 (𝜑𝐹 ∈ (𝐴 LMHom 𝐴))
17 assaring 21770 . . . . . . 7 (𝐴 ∈ AssAlg → 𝐴 ∈ Ring)
182, 17syl 17 . . . . . 6 (𝜑𝐴 ∈ Ring)
1918adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐴 ∈ Ring)
2015adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐶𝐵)
21 simpr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
221, 10, 19, 20, 21ringcld 20169 . . . 4 ((𝜑𝑥𝐵) → (𝐶 · 𝑥) ∈ 𝐵)
2322ralrimiva 3125 . . 3 (𝜑 → ∀𝑥𝐵 (𝐶 · 𝑥) ∈ 𝐵)
2418ringgrpd 20151 . . . . . . . 8 (𝜑𝐴 ∈ Grp)
2524ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Grp)
2621ad2antrr 726 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥𝐵)
27 simplr 768 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑦𝐵)
2814ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶𝐸)
29 eqid 2729 . . . . . . . . 9 (-g𝐴) = (-g𝐴)
301, 29, 25, 26, 27grpsubcld 32981 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g𝐴)𝑦) ∈ 𝐵)
3118ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Ring)
3215ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶𝐵)
331, 10, 29, 31, 32, 26, 27ringsubdi 20216 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g𝐴)𝑦)) = ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)))
3422ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) ∈ 𝐵)
351, 10, 31, 32, 27ringcld 20169 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑦) ∈ 𝐵)
36 simpr 484 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) = (𝐶 · 𝑦))
37 eqid 2729 . . . . . . . . . . . 12 (0g𝐴) = (0g𝐴)
381, 37, 29grpsubeq0 18958 . . . . . . . . . . 11 ((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) → (((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴) ↔ (𝐶 · 𝑥) = (𝐶 · 𝑦)))
3938biimpar 477 . . . . . . . . . 10 (((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴))
4025, 34, 35, 36, 39syl31anc 1375 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴))
4133, 40eqtrd 2764 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴))
4212, 1, 10, 37rrgeq0i 20608 . . . . . . . . 9 ((𝐶𝐸 ∧ (𝑥(-g𝐴)𝑦) ∈ 𝐵) → ((𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴) → (𝑥(-g𝐴)𝑦) = (0g𝐴)))
4342imp 406 . . . . . . . 8 (((𝐶𝐸 ∧ (𝑥(-g𝐴)𝑦) ∈ 𝐵) ∧ (𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴)) → (𝑥(-g𝐴)𝑦) = (0g𝐴))
4428, 30, 41, 43syl21anc 837 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g𝐴)𝑦) = (0g𝐴))
451, 37, 29grpsubeq0 18958 . . . . . . . 8 ((𝐴 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(-g𝐴)𝑦) = (0g𝐴) ↔ 𝑥 = 𝑦))
4645biimpa 476 . . . . . . 7 (((𝐴 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) ∧ (𝑥(-g𝐴)𝑦) = (0g𝐴)) → 𝑥 = 𝑦)
4725, 26, 27, 44, 46syl31anc 1375 . . . . . 6 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 = 𝑦)
4847ex 412 . . . . 5 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
4948anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
5049ralrimivva 3180 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
51 oveq2 7395 . . . 4 (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦))
5211, 51f1mpt 7236 . . 3 (𝐹:𝐵1-1𝐵 ↔ (∀𝑥𝐵 (𝐶 · 𝑥) ∈ 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)))
5323, 50, 52sylanbrc 583 . 2 (𝜑𝐹:𝐵1-1𝐵)
541, 8, 9, 16, 53lvecendof1f1o 33629 1 (𝜑𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cmpt 5188  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  0cn0 12442  Basecbs 17179  .rcmulr 17221  Scalarcsca 17223  0gc0g 17402  Grpcgrp 18865  -gcsg 18867  Ringcrg 20142  RLRegcrlreg 20600  DivRingcdr 20638  LModclmod 20766  LVecclvec 21009  AssAlgcasa 21759  dimcldim 33594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-r1 9717  df-rank 9718  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-xadd 13073  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ocomp 17241  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-mri 17549  df-acs 17550  df-proset 18255  df-drs 18256  df-poset 18274  df-ipo 18487  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-nzr 20422  df-subrg 20479  df-rlreg 20603  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lmhm 20929  df-lmim 20930  df-lbs 20982  df-lvec 21010  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-uvc 21692  df-lindf 21715  df-linds 21716  df-assa 21762  df-dim 33595
This theorem is referenced by:  assarrginv  33632
  Copyright terms: Public domain W3C validator