| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > assalactf1o | Structured version Visualization version GIF version | ||
| Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is bijective. See also lactlmhm 33679. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| Ref | Expression |
|---|---|
| lactlmhm.b | ⊢ 𝐵 = (Base‘𝐴) |
| lactlmhm.m | ⊢ · = (.r‘𝐴) |
| lactlmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) |
| lactlmhm.a | ⊢ (𝜑 → 𝐴 ∈ AssAlg) |
| assalactf1o.1 | ⊢ 𝐸 = (RLReg‘𝐴) |
| assalactf1o.k | ⊢ 𝐾 = (Scalar‘𝐴) |
| assalactf1o.2 | ⊢ (𝜑 → 𝐾 ∈ DivRing) |
| assalactf1o.3 | ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) |
| assalactf1o.c | ⊢ (𝜑 → 𝐶 ∈ 𝐸) |
| Ref | Expression |
|---|---|
| assalactf1o | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lactlmhm.b | . 2 ⊢ 𝐵 = (Base‘𝐴) | |
| 2 | lactlmhm.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ AssAlg) | |
| 3 | assalmod 21825 | . . . 4 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ LMod) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴 ∈ LMod) |
| 5 | assalactf1o.2 | . . 3 ⊢ (𝜑 → 𝐾 ∈ DivRing) | |
| 6 | assalactf1o.k | . . . 4 ⊢ 𝐾 = (Scalar‘𝐴) | |
| 7 | 6 | islvec 21067 | . . 3 ⊢ (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ 𝐾 ∈ DivRing)) |
| 8 | 4, 5, 7 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐴 ∈ LVec) |
| 9 | assalactf1o.3 | . 2 ⊢ (𝜑 → (dim‘𝐴) ∈ ℕ0) | |
| 10 | lactlmhm.m | . . 3 ⊢ · = (.r‘𝐴) | |
| 11 | lactlmhm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐶 · 𝑥)) | |
| 12 | assalactf1o.1 | . . . . 5 ⊢ 𝐸 = (RLReg‘𝐴) | |
| 13 | 12, 1 | rrgss 20667 | . . . 4 ⊢ 𝐸 ⊆ 𝐵 |
| 14 | assalactf1o.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝐸) | |
| 15 | 13, 14 | sselid 3961 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 16 | 1, 10, 11, 2, 15 | lactlmhm 33679 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐴 LMHom 𝐴)) |
| 17 | assaring 21826 | . . . . . . 7 ⊢ (𝐴 ∈ AssAlg → 𝐴 ∈ Ring) | |
| 18 | 2, 17 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ Ring) |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ Ring) |
| 20 | 15 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
| 21 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 22 | 1, 10, 19, 20, 21 | ringcld 20225 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐶 · 𝑥) ∈ 𝐵) |
| 23 | 22 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (𝐶 · 𝑥) ∈ 𝐵) |
| 24 | 18 | ringgrpd 20207 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ Grp) |
| 25 | 24 | ad3antrrr 730 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Grp) |
| 26 | 21 | ad2antrr 726 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 ∈ 𝐵) |
| 27 | simplr 768 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑦 ∈ 𝐵) | |
| 28 | 14 | ad3antrrr 730 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶 ∈ 𝐸) |
| 29 | eqid 2736 | . . . . . . . . 9 ⊢ (-g‘𝐴) = (-g‘𝐴) | |
| 30 | 1, 29, 25, 26, 27 | grpsubcld 33040 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) |
| 31 | 18 | ad3antrrr 730 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Ring) |
| 32 | 15 | ad3antrrr 730 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶 ∈ 𝐵) |
| 33 | 1, 10, 29, 31, 32, 26, 27 | ringsubdi 20272 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g‘𝐴)𝑦)) = ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦))) |
| 34 | 22 | ad2antrr 726 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) ∈ 𝐵) |
| 35 | 1, 10, 31, 32, 27 | ringcld 20225 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑦) ∈ 𝐵) |
| 36 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) = (𝐶 · 𝑦)) | |
| 37 | eqid 2736 | . . . . . . . . . . . 12 ⊢ (0g‘𝐴) = (0g‘𝐴) | |
| 38 | 1, 37, 29 | grpsubeq0 19014 | . . . . . . . . . . 11 ⊢ ((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) → (((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴) ↔ (𝐶 · 𝑥) = (𝐶 · 𝑦))) |
| 39 | 38 | biimpar 477 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴)) |
| 40 | 25, 34, 35, 36, 39 | syl31anc 1375 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g‘𝐴)(𝐶 · 𝑦)) = (0g‘𝐴)) |
| 41 | 33, 40 | eqtrd 2771 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴)) |
| 42 | 12, 1, 10, 37 | rrgeq0i 20664 | . . . . . . . . 9 ⊢ ((𝐶 ∈ 𝐸 ∧ (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) → ((𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴))) |
| 43 | 42 | imp 406 | . . . . . . . 8 ⊢ (((𝐶 ∈ 𝐸 ∧ (𝑥(-g‘𝐴)𝑦) ∈ 𝐵) ∧ (𝐶 · (𝑥(-g‘𝐴)𝑦)) = (0g‘𝐴)) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) |
| 44 | 28, 30, 41, 43 | syl21anc 837 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) |
| 45 | 1, 37, 29 | grpsubeq0 19014 | . . . . . . . 8 ⊢ ((𝐴 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝑥(-g‘𝐴)𝑦) = (0g‘𝐴) ↔ 𝑥 = 𝑦)) |
| 46 | 45 | biimpa 476 | . . . . . . 7 ⊢ (((𝐴 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) ∧ (𝑥(-g‘𝐴)𝑦) = (0g‘𝐴)) → 𝑥 = 𝑦) |
| 47 | 25, 26, 27, 44, 46 | syl31anc 1375 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 = 𝑦) |
| 48 | 47 | ex 412 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐵) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 49 | 48 | anasss 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 50 | 49 | ralrimivva 3188 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)) |
| 51 | oveq2 7418 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦)) | |
| 52 | 11, 51 | f1mpt 7259 | . . 3 ⊢ (𝐹:𝐵–1-1→𝐵 ↔ (∀𝑥 ∈ 𝐵 (𝐶 · 𝑥) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))) |
| 53 | 23, 50, 52 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐵) |
| 54 | 1, 8, 9, 16, 53 | lvecendof1f1o 33678 | 1 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ↦ cmpt 5206 –1-1→wf1 6533 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 ℕ0cn0 12506 Basecbs 17233 .rcmulr 17277 Scalarcsca 17279 0gc0g 17458 Grpcgrp 18921 -gcsg 18923 Ringcrg 20198 RLRegcrlreg 20656 DivRingcdr 20694 LModclmod 20822 LVecclvec 21065 AssAlgcasa 21815 dimcldim 33643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-reg 9611 ax-inf2 9660 ax-ac2 10482 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-rpss 7722 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-sup 9459 df-oi 9529 df-r1 9783 df-rank 9784 df-dju 9920 df-card 9958 df-acn 9961 df-ac 10135 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-xnn0 12580 df-z 12594 df-dec 12714 df-uz 12858 df-xadd 13134 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ocomp 17297 df-ds 17298 df-hom 17300 df-cco 17301 df-0g 17460 df-gsum 17461 df-prds 17466 df-pws 17468 df-mre 17603 df-mrc 17604 df-mri 17605 df-acs 17606 df-proset 18311 df-drs 18312 df-poset 18330 df-ipo 18543 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-nzr 20478 df-subrg 20535 df-rlreg 20659 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lmhm 20985 df-lmim 20986 df-lbs 21038 df-lvec 21066 df-sra 21136 df-rgmod 21137 df-dsmm 21697 df-frlm 21712 df-uvc 21748 df-lindf 21771 df-linds 21772 df-assa 21818 df-dim 33644 |
| This theorem is referenced by: assarrginv 33681 |
| Copyright terms: Public domain | W3C validator |