Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  assalactf1o Structured version   Visualization version   GIF version

Theorem assalactf1o 33680
Description: In an associative algebra 𝐴, left-multiplication by a fixed element of the algebra is bijective. See also lactlmhm 33679. (Contributed by Thierry Arnoux, 3-Aug-2025.)
Hypotheses
Ref Expression
lactlmhm.b 𝐵 = (Base‘𝐴)
lactlmhm.m · = (.r𝐴)
lactlmhm.f 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
lactlmhm.a (𝜑𝐴 ∈ AssAlg)
assalactf1o.1 𝐸 = (RLReg‘𝐴)
assalactf1o.k 𝐾 = (Scalar‘𝐴)
assalactf1o.2 (𝜑𝐾 ∈ DivRing)
assalactf1o.3 (𝜑 → (dim‘𝐴) ∈ ℕ0)
assalactf1o.c (𝜑𝐶𝐸)
Assertion
Ref Expression
assalactf1o (𝜑𝐹:𝐵1-1-onto𝐵)
Distinct variable groups:   𝑥, ·   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hints:   𝐸(𝑥)   𝐹(𝑥)   𝐾(𝑥)

Proof of Theorem assalactf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lactlmhm.b . 2 𝐵 = (Base‘𝐴)
2 lactlmhm.a . . . 4 (𝜑𝐴 ∈ AssAlg)
3 assalmod 21825 . . . 4 (𝐴 ∈ AssAlg → 𝐴 ∈ LMod)
42, 3syl 17 . . 3 (𝜑𝐴 ∈ LMod)
5 assalactf1o.2 . . 3 (𝜑𝐾 ∈ DivRing)
6 assalactf1o.k . . . 4 𝐾 = (Scalar‘𝐴)
76islvec 21067 . . 3 (𝐴 ∈ LVec ↔ (𝐴 ∈ LMod ∧ 𝐾 ∈ DivRing))
84, 5, 7sylanbrc 583 . 2 (𝜑𝐴 ∈ LVec)
9 assalactf1o.3 . 2 (𝜑 → (dim‘𝐴) ∈ ℕ0)
10 lactlmhm.m . . 3 · = (.r𝐴)
11 lactlmhm.f . . 3 𝐹 = (𝑥𝐵 ↦ (𝐶 · 𝑥))
12 assalactf1o.1 . . . . 5 𝐸 = (RLReg‘𝐴)
1312, 1rrgss 20667 . . . 4 𝐸𝐵
14 assalactf1o.c . . . 4 (𝜑𝐶𝐸)
1513, 14sselid 3961 . . 3 (𝜑𝐶𝐵)
161, 10, 11, 2, 15lactlmhm 33679 . 2 (𝜑𝐹 ∈ (𝐴 LMHom 𝐴))
17 assaring 21826 . . . . . . 7 (𝐴 ∈ AssAlg → 𝐴 ∈ Ring)
182, 17syl 17 . . . . . 6 (𝜑𝐴 ∈ Ring)
1918adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐴 ∈ Ring)
2015adantr 480 . . . . 5 ((𝜑𝑥𝐵) → 𝐶𝐵)
21 simpr 484 . . . . 5 ((𝜑𝑥𝐵) → 𝑥𝐵)
221, 10, 19, 20, 21ringcld 20225 . . . 4 ((𝜑𝑥𝐵) → (𝐶 · 𝑥) ∈ 𝐵)
2322ralrimiva 3133 . . 3 (𝜑 → ∀𝑥𝐵 (𝐶 · 𝑥) ∈ 𝐵)
2418ringgrpd 20207 . . . . . . . 8 (𝜑𝐴 ∈ Grp)
2524ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Grp)
2621ad2antrr 726 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥𝐵)
27 simplr 768 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑦𝐵)
2814ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶𝐸)
29 eqid 2736 . . . . . . . . 9 (-g𝐴) = (-g𝐴)
301, 29, 25, 26, 27grpsubcld 33040 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g𝐴)𝑦) ∈ 𝐵)
3118ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐴 ∈ Ring)
3215ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝐶𝐵)
331, 10, 29, 31, 32, 26, 27ringsubdi 20272 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g𝐴)𝑦)) = ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)))
3422ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) ∈ 𝐵)
351, 10, 31, 32, 27ringcld 20225 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑦) ∈ 𝐵)
36 simpr 484 . . . . . . . . . 10 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · 𝑥) = (𝐶 · 𝑦))
37 eqid 2736 . . . . . . . . . . . 12 (0g𝐴) = (0g𝐴)
381, 37, 29grpsubeq0 19014 . . . . . . . . . . 11 ((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) → (((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴) ↔ (𝐶 · 𝑥) = (𝐶 · 𝑦)))
3938biimpar 477 . . . . . . . . . 10 (((𝐴 ∈ Grp ∧ (𝐶 · 𝑥) ∈ 𝐵 ∧ (𝐶 · 𝑦) ∈ 𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴))
4025, 34, 35, 36, 39syl31anc 1375 . . . . . . . . 9 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → ((𝐶 · 𝑥)(-g𝐴)(𝐶 · 𝑦)) = (0g𝐴))
4133, 40eqtrd 2771 . . . . . . . 8 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴))
4212, 1, 10, 37rrgeq0i 20664 . . . . . . . . 9 ((𝐶𝐸 ∧ (𝑥(-g𝐴)𝑦) ∈ 𝐵) → ((𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴) → (𝑥(-g𝐴)𝑦) = (0g𝐴)))
4342imp 406 . . . . . . . 8 (((𝐶𝐸 ∧ (𝑥(-g𝐴)𝑦) ∈ 𝐵) ∧ (𝐶 · (𝑥(-g𝐴)𝑦)) = (0g𝐴)) → (𝑥(-g𝐴)𝑦) = (0g𝐴))
4428, 30, 41, 43syl21anc 837 . . . . . . 7 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → (𝑥(-g𝐴)𝑦) = (0g𝐴))
451, 37, 29grpsubeq0 19014 . . . . . . . 8 ((𝐴 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑥(-g𝐴)𝑦) = (0g𝐴) ↔ 𝑥 = 𝑦))
4645biimpa 476 . . . . . . 7 (((𝐴 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) ∧ (𝑥(-g𝐴)𝑦) = (0g𝐴)) → 𝑥 = 𝑦)
4725, 26, 27, 44, 46syl31anc 1375 . . . . . 6 ((((𝜑𝑥𝐵) ∧ 𝑦𝐵) ∧ (𝐶 · 𝑥) = (𝐶 · 𝑦)) → 𝑥 = 𝑦)
4847ex 412 . . . . 5 (((𝜑𝑥𝐵) ∧ 𝑦𝐵) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
4948anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
5049ralrimivva 3188 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦))
51 oveq2 7418 . . . 4 (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦))
5211, 51f1mpt 7259 . . 3 (𝐹:𝐵1-1𝐵 ↔ (∀𝑥𝐵 (𝐶 · 𝑥) ∈ 𝐵 ∧ ∀𝑥𝐵𝑦𝐵 ((𝐶 · 𝑥) = (𝐶 · 𝑦) → 𝑥 = 𝑦)))
5323, 50, 52sylanbrc 583 . 2 (𝜑𝐹:𝐵1-1𝐵)
541, 8, 9, 16, 53lvecendof1f1o 33678 1 (𝜑𝐹:𝐵1-1-onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cmpt 5206  1-1wf1 6533  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  0cn0 12506  Basecbs 17233  .rcmulr 17277  Scalarcsca 17279  0gc0g 17458  Grpcgrp 18921  -gcsg 18923  Ringcrg 20198  RLRegcrlreg 20656  DivRingcdr 20694  LModclmod 20822  LVecclvec 21065  AssAlgcasa 21815  dimcldim 33643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-rpss 7722  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-r1 9783  df-rank 9784  df-dju 9920  df-card 9958  df-acn 9961  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-xadd 13134  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ocomp 17297  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-mri 17605  df-acs 17606  df-proset 18311  df-drs 18312  df-poset 18330  df-ipo 18543  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-nzr 20478  df-subrg 20535  df-rlreg 20659  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lmhm 20985  df-lmim 20986  df-lbs 21038  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-uvc 21748  df-lindf 21771  df-linds 21772  df-assa 21818  df-dim 33644
This theorem is referenced by:  assarrginv  33681
  Copyright terms: Public domain W3C validator