Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version |
Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubcl.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
3 | 1, 2 | grpsubf 18699 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
4 | fovcdm 7474 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
5 | 3, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 × cxp 5598 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 Grpcgrp 18622 -gcsg 18624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-minusg 18626 df-sbg 18627 |
This theorem is referenced by: grpsubsub 18709 grpsubsub4 18713 grpnpncan 18715 grpnnncan2 18717 dfgrp3 18719 nsgconj 18832 nsgacs 18835 nsgid 18843 ghmnsgpreima 18904 ghmeqker 18906 ghmf1 18908 conjghm 18910 conjnmz 18913 conjnmzb 18914 sylow3lem2 19278 abladdsub4 19460 abladdsub 19461 ablpncan3 19463 ablsubsub4 19465 ablpnpcan 19466 ablnnncan 19469 ablnnncan1 19470 telgsumfzslem 19634 telgsumfzs 19635 telgsums 19639 lmodvsubcl 20213 lvecvscan2 20419 ipsubdir 20892 ipsubdi 20893 ip2subdi 20894 coe1subfv 21482 evl1subd 21553 dmatsubcl 21692 scmatsubcl 21711 mdetunilem9 21814 mdetuni0 21815 chmatcl 22022 chpmat1d 22030 chpdmatlem1 22032 chpscmat 22036 chpidmat 22041 chfacfisf 22048 cpmadugsumlemF 22070 cpmidgsum2 22073 tgpconncomp 23309 ghmcnp 23311 nrmmetd 23775 ngpds2 23807 ngpds3 23809 isngp4 23813 nmsub 23824 nm2dif 23826 nmtri2 23828 subgngp 23836 ngptgp 23837 nrgdsdi 23874 nrgdsdir 23875 nlmdsdi 23890 nlmdsdir 23891 nrginvrcnlem 23900 nmods 23953 tcphcphlem1 24444 tcphcph 24446 cphipval2 24450 4cphipval2 24451 cphipval 24452 ipcnlem2 24453 deg1sublt 25320 ply1divmo 25345 ply1divex 25346 r1pcl 25367 r1pid 25369 ply1remlem 25372 ig1peu 25381 dchr2sum 26466 lgsqrlem2 26540 lgsqrlem3 26541 lgsqrlem4 26542 ttgcontlem1 27297 ogrpsublt 31392 archiabllem1a 31490 archiabllem2a 31493 archiabllem2c 31494 ornglmulle 31549 orngrmulle 31550 lclkrlem2m 39575 isdomn4 40214 idomrootle 41058 lidldomn1 45537 linply1 45792 |
Copyright terms: Public domain | W3C validator |