| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 3 | 1, 2 | grpsubf 18929 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| 4 | fovcdm 7516 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
| 5 | 3, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 × cxp 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Grpcgrp 18843 -gcsg 18845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-sbg 18848 |
| This theorem is referenced by: grpsubsub 18939 grpsubsub4 18943 grpnpncan 18945 grpnnncan2 18947 dfgrp3 18949 xpsgrpsub 18971 nsgconj 19069 nsgacs 19072 nsgid 19080 ghmnsgpreima 19151 ghmeqker 19153 ghmf1 19156 conjghm 19159 conjnmz 19162 conjnmzb 19163 sylow3lem2 19538 abladdsub4 19721 abladdsub 19722 ablsubaddsub 19724 ablpncan3 19726 ablsubsub4 19728 ablpnpcan 19729 ablnnncan 19732 ablnnncan1 19733 telgsumfzslem 19898 telgsumfzs 19899 telgsums 19903 ogrpsublt 20052 isdomn4 20629 ornglmulle 20780 orngrmulle 20781 lmodvsubcl 20838 lvecvscan2 21047 rngqiprngimfolem 21225 rngqiprngimfo 21236 rngqiprngfulem3 21248 rngqiprngfulem4 21249 rngqiprngfulem5 21250 ipsubdir 21577 ipsubdi 21578 ip2subdi 21579 coe1subfv 22178 evl1subd 22255 dmatsubcl 22411 scmatsubcl 22430 mdetunilem9 22533 mdetuni0 22534 chmatcl 22741 chpmat1d 22749 chpdmatlem1 22751 chpscmat 22755 chpidmat 22760 chfacfisf 22767 cpmadugsumlemF 22789 cpmidgsum2 22792 tgpconncomp 24026 ghmcnp 24028 nrmmetd 24487 ngpds2 24519 ngpds3 24521 isngp4 24525 nmsub 24536 nm2dif 24538 nmtri2 24540 subgngp 24548 ngptgp 24549 nrgdsdi 24578 nrgdsdir 24579 nlmdsdi 24594 nlmdsdir 24595 nrginvrcnlem 24604 nmods 24657 tcphcphlem1 25160 tcphcph 25162 cphipval2 25166 4cphipval2 25167 cphipval 25168 ipcnlem2 25169 deg1sublt 26040 ply1divmo 26066 ply1divex 26067 r1pcl 26089 r1pid 26091 ply1remlem 26095 idomrootle 26103 ig1peu 26105 dchr2sum 27209 lgsqrlem2 27283 lgsqrlem3 27284 lgsqrlem4 27285 ttgcontlem1 28861 grpsubcld 33016 archiabllem1a 33155 archiabllem2a 33158 archiabllem2c 33159 erler 33227 rlocf1 33235 fracerl 33267 evls1subd 33530 q1pvsca 33559 irngss 33695 2sqr3minply 33788 lclkrlem2m 41557 aks6d1c2lem4 42159 aks6d1c6lem2 42203 aks6d1c6lem3 42204 aks5lem2 42219 lidldomn1 48261 linply1 48424 |
| Copyright terms: Public domain | W3C validator |