![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version |
Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubcl.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
3 | 1, 2 | grpsubf 19049 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
4 | fovcdm 7602 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
5 | 3, 4 | syl3an1 1162 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 × cxp 5686 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 Grpcgrp 18963 -gcsg 18965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-sbg 18968 |
This theorem is referenced by: grpsubsub 19059 grpsubsub4 19063 grpnpncan 19065 grpnnncan2 19067 dfgrp3 19069 xpsgrpsub 19091 nsgconj 19189 nsgacs 19192 nsgid 19200 ghmnsgpreima 19271 ghmeqker 19273 ghmf1 19276 conjghm 19279 conjnmz 19282 conjnmzb 19283 sylow3lem2 19660 abladdsub4 19843 abladdsub 19844 ablsubaddsub 19846 ablpncan3 19848 ablsubsub4 19850 ablpnpcan 19851 ablnnncan 19854 ablnnncan1 19855 telgsumfzslem 20020 telgsumfzs 20021 telgsums 20025 isdomn4 20732 lmodvsubcl 20921 lvecvscan2 21131 rngqiprngimfolem 21317 rngqiprngimfo 21328 rngqiprngfulem3 21340 rngqiprngfulem4 21341 rngqiprngfulem5 21342 ipsubdir 21677 ipsubdi 21678 ip2subdi 21679 coe1subfv 22284 evl1subd 22361 dmatsubcl 22519 scmatsubcl 22538 mdetunilem9 22641 mdetuni0 22642 chmatcl 22849 chpmat1d 22857 chpdmatlem1 22859 chpscmat 22863 chpidmat 22868 chfacfisf 22875 cpmadugsumlemF 22897 cpmidgsum2 22900 tgpconncomp 24136 ghmcnp 24138 nrmmetd 24602 ngpds2 24634 ngpds3 24636 isngp4 24640 nmsub 24651 nm2dif 24653 nmtri2 24655 subgngp 24663 ngptgp 24664 nrgdsdi 24701 nrgdsdir 24702 nlmdsdi 24717 nlmdsdir 24718 nrginvrcnlem 24727 nmods 24780 tcphcphlem1 25282 tcphcph 25284 cphipval2 25288 4cphipval2 25289 cphipval 25290 ipcnlem2 25291 deg1sublt 26163 ply1divmo 26189 ply1divex 26190 r1pcl 26212 r1pid 26214 ply1remlem 26218 idomrootle 26226 ig1peu 26228 dchr2sum 27331 lgsqrlem2 27405 lgsqrlem3 27406 lgsqrlem4 27407 ttgcontlem1 28913 grpsubcld 33027 ogrpsublt 33080 archiabllem1a 33180 archiabllem2a 33183 archiabllem2c 33184 erler 33251 rlocf1 33259 fracerl 33287 ornglmulle 33314 orngrmulle 33315 evls1subd 33576 q1pvsca 33603 irngss 33701 2sqr3minply 33752 lclkrlem2m 41501 aks6d1c2lem4 42108 aks6d1c6lem2 42152 aks6d1c6lem3 42153 aks5lem2 42168 lidldomn1 48074 linply1 48238 |
Copyright terms: Public domain | W3C validator |