| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 3 | 1, 2 | grpsubf 19038 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| 4 | fovcdm 7604 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
| 5 | 3, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 × cxp 5682 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Grpcgrp 18952 -gcsg 18954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 |
| This theorem is referenced by: grpsubsub 19048 grpsubsub4 19052 grpnpncan 19054 grpnnncan2 19056 dfgrp3 19058 xpsgrpsub 19080 nsgconj 19178 nsgacs 19181 nsgid 19189 ghmnsgpreima 19260 ghmeqker 19262 ghmf1 19265 conjghm 19268 conjnmz 19271 conjnmzb 19272 sylow3lem2 19647 abladdsub4 19830 abladdsub 19831 ablsubaddsub 19833 ablpncan3 19835 ablsubsub4 19837 ablpnpcan 19838 ablnnncan 19841 ablnnncan1 19842 telgsumfzslem 20007 telgsumfzs 20008 telgsums 20012 isdomn4 20717 lmodvsubcl 20906 lvecvscan2 21115 rngqiprngimfolem 21301 rngqiprngimfo 21312 rngqiprngfulem3 21324 rngqiprngfulem4 21325 rngqiprngfulem5 21326 ipsubdir 21661 ipsubdi 21662 ip2subdi 21663 coe1subfv 22270 evl1subd 22347 dmatsubcl 22505 scmatsubcl 22524 mdetunilem9 22627 mdetuni0 22628 chmatcl 22835 chpmat1d 22843 chpdmatlem1 22845 chpscmat 22849 chpidmat 22854 chfacfisf 22861 cpmadugsumlemF 22883 cpmidgsum2 22886 tgpconncomp 24122 ghmcnp 24124 nrmmetd 24588 ngpds2 24620 ngpds3 24622 isngp4 24626 nmsub 24637 nm2dif 24639 nmtri2 24641 subgngp 24649 ngptgp 24650 nrgdsdi 24687 nrgdsdir 24688 nlmdsdi 24703 nlmdsdir 24704 nrginvrcnlem 24713 nmods 24766 tcphcphlem1 25270 tcphcph 25272 cphipval2 25276 4cphipval2 25277 cphipval 25278 ipcnlem2 25279 deg1sublt 26150 ply1divmo 26176 ply1divex 26177 r1pcl 26199 r1pid 26201 ply1remlem 26205 idomrootle 26213 ig1peu 26215 dchr2sum 27318 lgsqrlem2 27392 lgsqrlem3 27393 lgsqrlem4 27394 ttgcontlem1 28900 grpsubcld 33046 ogrpsublt 33099 archiabllem1a 33199 archiabllem2a 33202 archiabllem2c 33203 erler 33270 rlocf1 33278 fracerl 33309 ornglmulle 33336 orngrmulle 33337 evls1subd 33598 q1pvsca 33625 irngss 33738 2sqr3minply 33792 lclkrlem2m 41522 aks6d1c2lem4 42129 aks6d1c6lem2 42173 aks6d1c6lem3 42174 aks5lem2 42189 lidldomn1 48152 linply1 48315 |
| Copyright terms: Public domain | W3C validator |