![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version |
Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubcl.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
3 | 1, 2 | grpsubf 19059 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
4 | fovcdm 7620 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
5 | 3, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 × cxp 5698 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Grpcgrp 18973 -gcsg 18975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 |
This theorem is referenced by: grpsubsub 19069 grpsubsub4 19073 grpnpncan 19075 grpnnncan2 19077 dfgrp3 19079 xpsgrpsub 19101 nsgconj 19199 nsgacs 19202 nsgid 19210 ghmnsgpreima 19281 ghmeqker 19283 ghmf1 19286 conjghm 19289 conjnmz 19292 conjnmzb 19293 sylow3lem2 19670 abladdsub4 19853 abladdsub 19854 ablsubaddsub 19856 ablpncan3 19858 ablsubsub4 19860 ablpnpcan 19861 ablnnncan 19864 ablnnncan1 19865 telgsumfzslem 20030 telgsumfzs 20031 telgsums 20035 isdomn4 20738 lmodvsubcl 20927 lvecvscan2 21137 rngqiprngimfolem 21323 rngqiprngimfo 21334 rngqiprngfulem3 21346 rngqiprngfulem4 21347 rngqiprngfulem5 21348 ipsubdir 21683 ipsubdi 21684 ip2subdi 21685 coe1subfv 22290 evl1subd 22367 dmatsubcl 22525 scmatsubcl 22544 mdetunilem9 22647 mdetuni0 22648 chmatcl 22855 chpmat1d 22863 chpdmatlem1 22865 chpscmat 22869 chpidmat 22874 chfacfisf 22881 cpmadugsumlemF 22903 cpmidgsum2 22906 tgpconncomp 24142 ghmcnp 24144 nrmmetd 24608 ngpds2 24640 ngpds3 24642 isngp4 24646 nmsub 24657 nm2dif 24659 nmtri2 24661 subgngp 24669 ngptgp 24670 nrgdsdi 24707 nrgdsdir 24708 nlmdsdi 24723 nlmdsdir 24724 nrginvrcnlem 24733 nmods 24786 tcphcphlem1 25288 tcphcph 25290 cphipval2 25294 4cphipval2 25295 cphipval 25296 ipcnlem2 25297 deg1sublt 26169 ply1divmo 26195 ply1divex 26196 r1pcl 26218 r1pid 26220 ply1remlem 26224 idomrootle 26232 ig1peu 26234 dchr2sum 27335 lgsqrlem2 27409 lgsqrlem3 27410 lgsqrlem4 27411 ttgcontlem1 28917 grpsubcld 33026 ogrpsublt 33071 archiabllem1a 33171 archiabllem2a 33174 archiabllem2c 33175 erler 33237 rlocf1 33245 fracerl 33273 ornglmulle 33300 orngrmulle 33301 evls1subd 33562 q1pvsca 33589 irngss 33687 2sqr3minply 33738 lclkrlem2m 41476 aks6d1c2lem4 42084 aks6d1c6lem2 42128 aks6d1c6lem3 42129 aks5lem2 42144 lidldomn1 47954 linply1 48122 |
Copyright terms: Public domain | W3C validator |