| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 3 | 1, 2 | grpsubf 18934 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| 4 | fovcdm 7522 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
| 5 | 3, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 × cxp 5617 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Grpcgrp 18848 -gcsg 18850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 |
| This theorem is referenced by: grpsubsub 18944 grpsubsub4 18948 grpnpncan 18950 grpnnncan2 18952 dfgrp3 18954 xpsgrpsub 18976 nsgconj 19073 nsgacs 19076 nsgid 19084 ghmnsgpreima 19155 ghmeqker 19157 ghmf1 19160 conjghm 19163 conjnmz 19166 conjnmzb 19167 sylow3lem2 19542 abladdsub4 19725 abladdsub 19726 ablsubaddsub 19728 ablpncan3 19730 ablsubsub4 19732 ablpnpcan 19733 ablnnncan 19736 ablnnncan1 19737 telgsumfzslem 19902 telgsumfzs 19903 telgsums 19907 ogrpsublt 20056 isdomn4 20633 ornglmulle 20784 orngrmulle 20785 lmodvsubcl 20842 lvecvscan2 21051 rngqiprngimfolem 21229 rngqiprngimfo 21240 rngqiprngfulem3 21252 rngqiprngfulem4 21253 rngqiprngfulem5 21254 ipsubdir 21581 ipsubdi 21582 ip2subdi 21583 coe1subfv 22181 evl1subd 22258 dmatsubcl 22414 scmatsubcl 22433 mdetunilem9 22536 mdetuni0 22537 chmatcl 22744 chpmat1d 22752 chpdmatlem1 22754 chpscmat 22758 chpidmat 22763 chfacfisf 22770 cpmadugsumlemF 22792 cpmidgsum2 22795 tgpconncomp 24029 ghmcnp 24031 nrmmetd 24490 ngpds2 24522 ngpds3 24524 isngp4 24528 nmsub 24539 nm2dif 24541 nmtri2 24543 subgngp 24551 ngptgp 24552 nrgdsdi 24581 nrgdsdir 24582 nlmdsdi 24597 nlmdsdir 24598 nrginvrcnlem 24607 nmods 24660 tcphcphlem1 25163 tcphcph 25165 cphipval2 25169 4cphipval2 25170 cphipval 25171 ipcnlem2 25172 deg1sublt 26043 ply1divmo 26069 ply1divex 26070 r1pcl 26092 r1pid 26094 ply1remlem 26098 idomrootle 26106 ig1peu 26108 dchr2sum 27212 lgsqrlem2 27286 lgsqrlem3 27287 lgsqrlem4 27288 ttgcontlem1 28864 grpsubcld 33028 archiabllem1a 33167 archiabllem2a 33170 archiabllem2c 33171 erler 33239 rlocf1 33247 fracerl 33279 evls1subd 33542 q1pvsca 33571 irngss 33721 2sqr3minply 33814 lclkrlem2m 41639 aks6d1c2lem4 42241 aks6d1c6lem2 42285 aks6d1c6lem3 42286 aks5lem2 42301 lidldomn1 48356 linply1 48519 |
| Copyright terms: Public domain | W3C validator |