Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version |
Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubcl.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
3 | 1, 2 | grpsubf 18635 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
4 | fovrn 7433 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
5 | 3, 4 | syl3an1 1161 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 × cxp 5586 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 Grpcgrp 18558 -gcsg 18560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-minusg 18562 df-sbg 18563 |
This theorem is referenced by: grpsubsub 18645 grpsubsub4 18649 grpnpncan 18651 grpnnncan2 18653 dfgrp3 18655 nsgconj 18768 nsgacs 18771 nsgid 18779 ghmnsgpreima 18840 ghmeqker 18842 ghmf1 18844 conjghm 18846 conjnmz 18849 conjnmzb 18850 sylow3lem2 19214 abladdsub4 19396 abladdsub 19397 ablpncan3 19399 ablsubsub4 19401 ablpnpcan 19402 ablnnncan 19405 ablnnncan1 19406 telgsumfzslem 19570 telgsumfzs 19571 telgsums 19575 lmodvsubcl 20149 lvecvscan2 20355 ipsubdir 20828 ipsubdi 20829 ip2subdi 20830 coe1subfv 21418 evl1subd 21489 dmatsubcl 21628 scmatsubcl 21647 mdetunilem9 21750 mdetuni0 21751 chmatcl 21958 chpmat1d 21966 chpdmatlem1 21968 chpscmat 21972 chpidmat 21977 chfacfisf 21984 cpmadugsumlemF 22006 cpmidgsum2 22009 tgpconncomp 23245 ghmcnp 23247 nrmmetd 23711 ngpds2 23743 ngpds3 23745 isngp4 23749 nmsub 23760 nm2dif 23762 nmtri2 23764 subgngp 23772 ngptgp 23773 nrgdsdi 23810 nrgdsdir 23811 nlmdsdi 23826 nlmdsdir 23827 nrginvrcnlem 23836 nmods 23889 tcphcphlem1 24380 tcphcph 24382 cphipval2 24386 4cphipval2 24387 cphipval 24388 ipcnlem2 24389 deg1sublt 25256 ply1divmo 25281 ply1divex 25282 r1pcl 25303 r1pid 25305 ply1remlem 25308 ig1peu 25317 dchr2sum 26402 lgsqrlem2 26476 lgsqrlem3 26477 lgsqrlem4 26478 ttgcontlem1 27233 ogrpsublt 31326 archiabllem1a 31424 archiabllem2a 31427 archiabllem2c 31428 ornglmulle 31483 orngrmulle 31484 lclkrlem2m 39512 isdomn4 40152 idomrootle 41000 lidldomn1 45431 linply1 45686 |
Copyright terms: Public domain | W3C validator |