![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version |
Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
Ref | Expression |
---|---|
grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubcl.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
3 | 1, 2 | grpsubf 18945 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
4 | fovcdm 7581 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
5 | 3, 4 | syl3an1 1162 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 × cxp 5674 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 Grpcgrp 18861 -gcsg 18863 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-sbg 18866 |
This theorem is referenced by: grpsubsub 18955 grpsubsub4 18959 grpnpncan 18961 grpnnncan2 18963 dfgrp3 18965 xpsgrpsub 18987 nsgconj 19082 nsgacs 19085 nsgid 19093 ghmnsgpreima 19162 ghmeqker 19164 ghmf1 19167 conjghm 19170 conjnmz 19173 conjnmzb 19174 sylow3lem2 19544 abladdsub4 19727 abladdsub 19728 ablsubaddsub 19730 ablpncan3 19732 ablsubsub4 19734 ablpnpcan 19735 ablnnncan 19738 ablnnncan1 19739 telgsumfzslem 19904 telgsumfzs 19905 telgsums 19909 lmodvsubcl 20749 lvecvscan2 20959 rngqiprngimfolem 21138 rngqiprngimfo 21149 rngqiprngfulem3 21161 rngqiprngfulem4 21162 rngqiprngfulem5 21163 isdomn4 21207 ipsubdir 21505 ipsubdi 21506 ip2subdi 21507 coe1subfv 22108 evl1subd 22181 dmatsubcl 22320 scmatsubcl 22339 mdetunilem9 22442 mdetuni0 22443 chmatcl 22650 chpmat1d 22658 chpdmatlem1 22660 chpscmat 22664 chpidmat 22669 chfacfisf 22676 cpmadugsumlemF 22698 cpmidgsum2 22701 tgpconncomp 23937 ghmcnp 23939 nrmmetd 24403 ngpds2 24435 ngpds3 24437 isngp4 24441 nmsub 24452 nm2dif 24454 nmtri2 24456 subgngp 24464 ngptgp 24465 nrgdsdi 24502 nrgdsdir 24503 nlmdsdi 24518 nlmdsdir 24519 nrginvrcnlem 24528 nmods 24581 tcphcphlem1 25083 tcphcph 25085 cphipval2 25089 4cphipval2 25090 cphipval 25091 ipcnlem2 25092 deg1sublt 25966 ply1divmo 25991 ply1divex 25992 r1pcl 26013 r1pid 26015 ply1remlem 26018 ig1peu 26027 dchr2sum 27119 lgsqrlem2 27193 lgsqrlem3 27194 lgsqrlem4 27195 ttgcontlem1 28575 ogrpsublt 32675 archiabllem1a 32773 archiabllem2a 32776 archiabllem2c 32777 ornglmulle 32859 orngrmulle 32860 q1pvsca 33115 irngss 33206 lclkrlem2m 40854 idomrootle 42400 lidldomn1 47068 linply1 47236 |
Copyright terms: Public domain | W3C validator |