| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 3 | 1, 2 | grpsubf 19007 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| 4 | fovcdm 7585 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
| 5 | 3, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 × cxp 5663 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 Grpcgrp 18921 -gcsg 18923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-0g 17458 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 |
| This theorem is referenced by: grpsubsub 19017 grpsubsub4 19021 grpnpncan 19023 grpnnncan2 19025 dfgrp3 19027 xpsgrpsub 19049 nsgconj 19147 nsgacs 19150 nsgid 19158 ghmnsgpreima 19229 ghmeqker 19231 ghmf1 19234 conjghm 19237 conjnmz 19240 conjnmzb 19241 sylow3lem2 19615 abladdsub4 19798 abladdsub 19799 ablsubaddsub 19801 ablpncan3 19803 ablsubsub4 19805 ablpnpcan 19806 ablnnncan 19809 ablnnncan1 19810 telgsumfzslem 19975 telgsumfzs 19976 telgsums 19980 isdomn4 20685 lmodvsubcl 20874 lvecvscan2 21083 rngqiprngimfolem 21263 rngqiprngimfo 21274 rngqiprngfulem3 21286 rngqiprngfulem4 21287 rngqiprngfulem5 21288 ipsubdir 21615 ipsubdi 21616 ip2subdi 21617 coe1subfv 22218 evl1subd 22295 dmatsubcl 22453 scmatsubcl 22472 mdetunilem9 22575 mdetuni0 22576 chmatcl 22783 chpmat1d 22791 chpdmatlem1 22793 chpscmat 22797 chpidmat 22802 chfacfisf 22809 cpmadugsumlemF 22831 cpmidgsum2 22834 tgpconncomp 24068 ghmcnp 24070 nrmmetd 24532 ngpds2 24564 ngpds3 24566 isngp4 24570 nmsub 24581 nm2dif 24583 nmtri2 24585 subgngp 24593 ngptgp 24594 nrgdsdi 24623 nrgdsdir 24624 nlmdsdi 24639 nlmdsdir 24640 nrginvrcnlem 24649 nmods 24702 tcphcphlem1 25206 tcphcph 25208 cphipval2 25212 4cphipval2 25213 cphipval 25214 ipcnlem2 25215 deg1sublt 26086 ply1divmo 26112 ply1divex 26113 r1pcl 26135 r1pid 26137 ply1remlem 26141 idomrootle 26149 ig1peu 26151 dchr2sum 27254 lgsqrlem2 27328 lgsqrlem3 27329 lgsqrlem4 27330 ttgcontlem1 28831 grpsubcld 32989 ogrpsublt 33042 archiabllem1a 33142 archiabllem2a 33145 archiabllem2c 33146 erler 33213 rlocf1 33221 fracerl 33253 ornglmulle 33280 orngrmulle 33281 evls1subd 33537 q1pvsca 33564 irngss 33679 2sqr3minply 33765 lclkrlem2m 41496 aks6d1c2lem4 42103 aks6d1c6lem2 42147 aks6d1c6lem3 42148 aks5lem2 42163 lidldomn1 48120 linply1 48283 |
| Copyright terms: Public domain | W3C validator |