| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 3 | 1, 2 | grpsubf 19007 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| 4 | fovcdm 7582 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
| 5 | 3, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 × cxp 5657 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 Grpcgrp 18921 -gcsg 18923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 |
| This theorem is referenced by: grpsubsub 19017 grpsubsub4 19021 grpnpncan 19023 grpnnncan2 19025 dfgrp3 19027 xpsgrpsub 19049 nsgconj 19147 nsgacs 19150 nsgid 19158 ghmnsgpreima 19229 ghmeqker 19231 ghmf1 19234 conjghm 19237 conjnmz 19240 conjnmzb 19241 sylow3lem2 19614 abladdsub4 19797 abladdsub 19798 ablsubaddsub 19800 ablpncan3 19802 ablsubsub4 19804 ablpnpcan 19805 ablnnncan 19808 ablnnncan1 19809 telgsumfzslem 19974 telgsumfzs 19975 telgsums 19979 isdomn4 20681 lmodvsubcl 20869 lvecvscan2 21078 rngqiprngimfolem 21256 rngqiprngimfo 21267 rngqiprngfulem3 21279 rngqiprngfulem4 21280 rngqiprngfulem5 21281 ipsubdir 21607 ipsubdi 21608 ip2subdi 21609 coe1subfv 22208 evl1subd 22285 dmatsubcl 22441 scmatsubcl 22460 mdetunilem9 22563 mdetuni0 22564 chmatcl 22771 chpmat1d 22779 chpdmatlem1 22781 chpscmat 22785 chpidmat 22790 chfacfisf 22797 cpmadugsumlemF 22819 cpmidgsum2 22822 tgpconncomp 24056 ghmcnp 24058 nrmmetd 24518 ngpds2 24550 ngpds3 24552 isngp4 24556 nmsub 24567 nm2dif 24569 nmtri2 24571 subgngp 24579 ngptgp 24580 nrgdsdi 24609 nrgdsdir 24610 nlmdsdi 24625 nlmdsdir 24626 nrginvrcnlem 24635 nmods 24688 tcphcphlem1 25192 tcphcph 25194 cphipval2 25198 4cphipval2 25199 cphipval 25200 ipcnlem2 25201 deg1sublt 26072 ply1divmo 26098 ply1divex 26099 r1pcl 26121 r1pid 26123 ply1remlem 26127 idomrootle 26135 ig1peu 26137 dchr2sum 27241 lgsqrlem2 27315 lgsqrlem3 27316 lgsqrlem4 27317 ttgcontlem1 28869 grpsubcld 33040 ogrpsublt 33094 archiabllem1a 33194 archiabllem2a 33197 archiabllem2c 33198 erler 33265 rlocf1 33273 fracerl 33305 ornglmulle 33332 orngrmulle 33333 evls1subd 33590 q1pvsca 33618 irngss 33733 2sqr3minply 33819 lclkrlem2m 41543 aks6d1c2lem4 42145 aks6d1c6lem2 42189 aks6d1c6lem3 42190 aks5lem2 42205 lidldomn1 48186 linply1 48349 |
| Copyright terms: Public domain | W3C validator |