| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubcl | Structured version Visualization version GIF version | ||
| Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.) |
| Ref | Expression |
|---|---|
| grpsubcl.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubcl.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| grpsubcl | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpsubcl.m | . . 3 ⊢ − = (-g‘𝐺) | |
| 3 | 1, 2 | grpsubf 18951 | . 2 ⊢ (𝐺 ∈ Grp → − :(𝐵 × 𝐵)⟶𝐵) |
| 4 | fovcdm 7559 | . 2 ⊢ (( − :(𝐵 × 𝐵)⟶𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) | |
| 5 | 3, 4 | syl3an1 1163 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 − 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Grpcgrp 18865 -gcsg 18867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 |
| This theorem is referenced by: grpsubsub 18961 grpsubsub4 18965 grpnpncan 18967 grpnnncan2 18969 dfgrp3 18971 xpsgrpsub 18993 nsgconj 19091 nsgacs 19094 nsgid 19102 ghmnsgpreima 19173 ghmeqker 19175 ghmf1 19178 conjghm 19181 conjnmz 19184 conjnmzb 19185 sylow3lem2 19558 abladdsub4 19741 abladdsub 19742 ablsubaddsub 19744 ablpncan3 19746 ablsubsub4 19748 ablpnpcan 19749 ablnnncan 19752 ablnnncan1 19753 telgsumfzslem 19918 telgsumfzs 19919 telgsums 19923 isdomn4 20625 lmodvsubcl 20813 lvecvscan2 21022 rngqiprngimfolem 21200 rngqiprngimfo 21211 rngqiprngfulem3 21223 rngqiprngfulem4 21224 rngqiprngfulem5 21225 ipsubdir 21551 ipsubdi 21552 ip2subdi 21553 coe1subfv 22152 evl1subd 22229 dmatsubcl 22385 scmatsubcl 22404 mdetunilem9 22507 mdetuni0 22508 chmatcl 22715 chpmat1d 22723 chpdmatlem1 22725 chpscmat 22729 chpidmat 22734 chfacfisf 22741 cpmadugsumlemF 22763 cpmidgsum2 22766 tgpconncomp 24000 ghmcnp 24002 nrmmetd 24462 ngpds2 24494 ngpds3 24496 isngp4 24500 nmsub 24511 nm2dif 24513 nmtri2 24515 subgngp 24523 ngptgp 24524 nrgdsdi 24553 nrgdsdir 24554 nlmdsdi 24569 nlmdsdir 24570 nrginvrcnlem 24579 nmods 24632 tcphcphlem1 25135 tcphcph 25137 cphipval2 25141 4cphipval2 25142 cphipval 25143 ipcnlem2 25144 deg1sublt 26015 ply1divmo 26041 ply1divex 26042 r1pcl 26064 r1pid 26066 ply1remlem 26070 idomrootle 26078 ig1peu 26080 dchr2sum 27184 lgsqrlem2 27258 lgsqrlem3 27259 lgsqrlem4 27260 ttgcontlem1 28812 grpsubcld 32981 ogrpsublt 33035 archiabllem1a 33145 archiabllem2a 33148 archiabllem2c 33149 erler 33216 rlocf1 33224 fracerl 33256 ornglmulle 33283 orngrmulle 33284 evls1subd 33541 q1pvsca 33569 irngss 33682 2sqr3minply 33770 lclkrlem2m 41513 aks6d1c2lem4 42115 aks6d1c6lem2 42159 aks6d1c6lem3 42160 aks5lem2 42175 lidldomn1 48219 linply1 48382 |
| Copyright terms: Public domain | W3C validator |