Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∧ w3a 1087
= wceq 1541 ∈
wcel 2106 × cxp 5674
⟶wf 6539 ‘cfv 6543 (class class class)co 7411
Basecbs 17146 Grpcgrp 18821
-gcsg 18823 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-0g 17389 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-grp 18824 df-minusg 18825 df-sbg 18826 |
This theorem is referenced by: grpsubsub
18914 grpsubsub4
18918 grpnpncan
18920 grpnnncan2
18922 dfgrp3
18924 xpsgrpsub
18946 nsgconj
19041 nsgacs
19044 nsgid
19052 ghmnsgpreima
19119 ghmeqker
19121 ghmf1
19123 conjghm
19125 conjnmz
19128 conjnmzb
19129 sylow3lem2
19498 abladdsub4
19681 abladdsub
19682 ablsubaddsub
19684 ablpncan3
19686 ablsubsub4
19688 ablpnpcan
19689 ablnnncan
19692 ablnnncan1
19693 telgsumfzslem
19858 telgsumfzs
19859 telgsums
19863 lmodvsubcl
20522 lvecvscan2
20731 isdomn4
20924 ipsubdir
21201 ipsubdi
21202 ip2subdi
21203 coe1subfv
21795 evl1subd
21868 dmatsubcl
22007 scmatsubcl
22026 mdetunilem9
22129 mdetuni0
22130 chmatcl
22337 chpmat1d
22345 chpdmatlem1
22347 chpscmat
22351 chpidmat
22356 chfacfisf
22363 cpmadugsumlemF
22385 cpmidgsum2
22388 tgpconncomp
23624 ghmcnp
23626 nrmmetd
24090 ngpds2
24122 ngpds3
24124 isngp4
24128 nmsub
24139 nm2dif
24141 nmtri2
24143 subgngp
24151 ngptgp
24152 nrgdsdi
24189 nrgdsdir
24190 nlmdsdi
24205 nlmdsdir
24206 nrginvrcnlem
24215 nmods
24268 tcphcphlem1
24759 tcphcph
24761 cphipval2
24765 4cphipval2
24766 cphipval
24767 ipcnlem2
24768 deg1sublt
25635 ply1divmo
25660 ply1divex
25661 r1pcl
25682 r1pid
25684 ply1remlem
25687 ig1peu
25696 dchr2sum
26783 lgsqrlem2
26857 lgsqrlem3
26858 lgsqrlem4
26859 ttgcontlem1
28180 ogrpsublt
32280 archiabllem1a
32378 archiabllem2a
32381 archiabllem2c
32382 ornglmulle
32464 orngrmulle
32465 q1pvsca
32720 irngss
32811 lclkrlem2m
40476 idomrootle
42019 rngqiprngimfolem
46854 rngqiprngimfo
46865 rngqiprngfulem3
46877 rngqiprngfulem4
46878 rngqiprngfulem5
46879 lidldomn1
46902 linply1
47152 |