Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapfnN Structured version   Visualization version   GIF version

Theorem hgmapfnN 37909
Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hgmapfn.h 𝐻 = (LHyp‘𝐾)
hgmapfn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfn.r 𝑅 = (Scalar‘𝑈)
hgmapfn.b 𝐵 = (Base‘𝑅)
hgmapfn.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hgmapfn.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hgmapfnN (𝜑𝐺 Fn 𝐵)

Proof of Theorem hgmapfnN
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 6843 . . 3 (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) ∈ V
2 eqid 2799 . . 3 (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) = (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))))
31, 2fnmpti 6233 . 2 (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵
4 hgmapfn.h . . . 4 𝐻 = (LHyp‘𝐾)
5 hgmapfn.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 eqid 2799 . . . 4 (Base‘𝑈) = (Base‘𝑈)
7 eqid 2799 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
8 hgmapfn.r . . . 4 𝑅 = (Scalar‘𝑈)
9 hgmapfn.b . . . 4 𝐵 = (Base‘𝑅)
10 eqid 2799 . . . 4 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
11 eqid 2799 . . . 4 ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))
12 eqid 2799 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
13 hgmapfn.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
14 hgmapfn.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
154, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hgmapfval 37907 . . 3 (𝜑𝐺 = (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))))
1615fneq1d 6192 . 2 (𝜑 → (𝐺 Fn 𝐵 ↔ (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵))
173, 16mpbiri 250 1 (𝜑𝐺 Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3089  cmpt 4922   Fn wfn 6096  cfv 6101  crio 6838  (class class class)co 6878  Basecbs 16184  Scalarcsca 16270   ·𝑠 cvsca 16271  HLchlt 35371  LHypclh 36005  DVecHcdvh 37099  LCDualclcd 37607  HDMapchdma 37813  HGMapchg 37904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pr 5097
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-hgmap 37905
This theorem is referenced by:  hgmaprnlem1N  37917  hgmaprnN  37922  hgmapf1oN  37924
  Copyright terms: Public domain W3C validator