![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapfnN | Structured version Visualization version GIF version |
Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hgmapfn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmapfn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmapfn.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmapfn.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmapfn.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hgmapfn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hgmapfnN | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 7408 | . . 3 ⊢ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) ∈ V | |
2 | eqid 2740 | . . 3 ⊢ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) = (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) | |
3 | 1, 2 | fnmpti 6723 | . 2 ⊢ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵 |
4 | hgmapfn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | hgmapfn.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | eqid 2740 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
7 | eqid 2740 | . . . 4 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
8 | hgmapfn.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
9 | hgmapfn.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
10 | eqid 2740 | . . . 4 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
11 | eqid 2740 | . . . 4 ⊢ ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) | |
12 | eqid 2740 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
13 | hgmapfn.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
14 | hgmapfn.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | hgmapfval 41843 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))))) |
16 | 15 | fneq1d 6672 | . 2 ⊢ (𝜑 → (𝐺 Fn 𝐵 ↔ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵)) |
17 | 3, 16 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 Fn wfn 6568 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 LCDualclcd 41543 HDMapchdma 41749 HGMapchg 41840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-hgmap 41841 |
This theorem is referenced by: hgmaprnlem1N 41853 hgmaprnN 41858 hgmapf1oN 41860 |
Copyright terms: Public domain | W3C validator |