| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapfnN | Structured version Visualization version GIF version | ||
| Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hgmapfn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hgmapfn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hgmapfn.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hgmapfn.b | ⊢ 𝐵 = (Base‘𝑅) |
| hgmapfn.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hgmapfn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| hgmapfnN | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7302 | . . 3 ⊢ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) ∈ V | |
| 2 | eqid 2731 | . . 3 ⊢ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) = (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) | |
| 3 | 1, 2 | fnmpti 6619 | . 2 ⊢ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵 |
| 4 | hgmapfn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | hgmapfn.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | eqid 2731 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 7 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 8 | hgmapfn.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 9 | hgmapfn.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | eqid 2731 | . . . 4 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
| 11 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) | |
| 12 | eqid 2731 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
| 13 | hgmapfn.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 14 | hgmapfn.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | hgmapfval 41925 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))))) |
| 16 | 15 | fneq1d 6569 | . 2 ⊢ (𝜑 → (𝐺 Fn 𝐵 ↔ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵)) |
| 17 | 3, 16 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ↦ cmpt 5167 Fn wfn 6471 ‘cfv 6476 ℩crio 7297 (class class class)co 7341 Basecbs 17115 Scalarcsca 17159 ·𝑠 cvsca 17160 HLchlt 39389 LHypclh 40023 DVecHcdvh 41117 LCDualclcd 41625 HDMapchdma 41831 HGMapchg 41922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-hgmap 41923 |
| This theorem is referenced by: hgmaprnlem1N 41935 hgmaprnN 41940 hgmapf1oN 41942 |
| Copyright terms: Public domain | W3C validator |