Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapfnN Structured version   Visualization version   GIF version

Theorem hgmapfnN 41882
Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
hgmapfn.h 𝐻 = (LHyp‘𝐾)
hgmapfn.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfn.r 𝑅 = (Scalar‘𝑈)
hgmapfn.b 𝐵 = (Base‘𝑅)
hgmapfn.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hgmapfn.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hgmapfnN (𝜑𝐺 Fn 𝐵)

Proof of Theorem hgmapfnN
Dummy variables 𝑗 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7348 . . 3 (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) ∈ V
2 eqid 2729 . . 3 (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) = (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))))
31, 2fnmpti 6661 . 2 (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵
4 hgmapfn.h . . . 4 𝐻 = (LHyp‘𝐾)
5 hgmapfn.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 eqid 2729 . . . 4 (Base‘𝑈) = (Base‘𝑈)
7 eqid 2729 . . . 4 ( ·𝑠𝑈) = ( ·𝑠𝑈)
8 hgmapfn.r . . . 4 𝑅 = (Scalar‘𝑈)
9 hgmapfn.b . . . 4 𝐵 = (Base‘𝑅)
10 eqid 2729 . . . 4 ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊)
11 eqid 2729 . . . 4 ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))
12 eqid 2729 . . . 4 ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊)
13 hgmapfn.g . . . 4 𝐺 = ((HGMap‘𝐾)‘𝑊)
14 hgmapfn.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
154, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hgmapfval 41880 . . 3 (𝜑𝐺 = (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))))
1615fneq1d 6611 . 2 (𝜑 → (𝐺 Fn 𝐵 ↔ (𝑘𝐵 ↦ (𝑗𝐵𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵))
173, 16mpbiri 258 1 (𝜑𝐺 Fn 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cmpt 5188   Fn wfn 6506  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  LCDualclcd 41580  HDMapchdma 41786  HGMapchg 41877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-hgmap 41878
This theorem is referenced by:  hgmaprnlem1N  41890  hgmaprnN  41895  hgmapf1oN  41897
  Copyright terms: Public domain W3C validator