Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapfnN | Structured version Visualization version GIF version |
Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hgmapfn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmapfn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmapfn.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmapfn.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmapfn.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hgmapfn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hgmapfnN | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 7216 | . . 3 ⊢ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) ∈ V | |
2 | eqid 2738 | . . 3 ⊢ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) = (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) | |
3 | 1, 2 | fnmpti 6560 | . 2 ⊢ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵 |
4 | hgmapfn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | hgmapfn.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | eqid 2738 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
7 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
8 | hgmapfn.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
9 | hgmapfn.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
10 | eqid 2738 | . . . 4 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
11 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) | |
12 | eqid 2738 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
13 | hgmapfn.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
14 | hgmapfn.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | hgmapfval 39827 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))))) |
16 | 15 | fneq1d 6510 | . 2 ⊢ (𝜑 → (𝐺 Fn 𝐵 ↔ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵)) |
17 | 3, 16 | mpbiri 257 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ↦ cmpt 5153 Fn wfn 6413 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 LCDualclcd 39527 HDMapchdma 39733 HGMapchg 39824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-hgmap 39825 |
This theorem is referenced by: hgmaprnlem1N 39837 hgmaprnN 39842 hgmapf1oN 39844 |
Copyright terms: Public domain | W3C validator |