![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapfnN | Structured version Visualization version GIF version |
Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hgmapfn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmapfn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmapfn.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmapfn.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmapfn.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hgmapfn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hgmapfnN | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 6843 | . . 3 ⊢ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) ∈ V | |
2 | eqid 2799 | . . 3 ⊢ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) = (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) | |
3 | 1, 2 | fnmpti 6233 | . 2 ⊢ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵 |
4 | hgmapfn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | hgmapfn.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | eqid 2799 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
7 | eqid 2799 | . . . 4 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
8 | hgmapfn.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
9 | hgmapfn.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
10 | eqid 2799 | . . . 4 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
11 | eqid 2799 | . . . 4 ⊢ ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) | |
12 | eqid 2799 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
13 | hgmapfn.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
14 | hgmapfn.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | hgmapfval 37907 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))))) |
16 | 15 | fneq1d 6192 | . 2 ⊢ (𝜑 → (𝐺 Fn 𝐵 ↔ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵)) |
17 | 3, 16 | mpbiri 250 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ↦ cmpt 4922 Fn wfn 6096 ‘cfv 6101 ℩crio 6838 (class class class)co 6878 Basecbs 16184 Scalarcsca 16270 ·𝑠 cvsca 16271 HLchlt 35371 LHypclh 36005 DVecHcdvh 37099 LCDualclcd 37607 HDMapchdma 37813 HGMapchg 37904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-hgmap 37905 |
This theorem is referenced by: hgmaprnlem1N 37917 hgmaprnN 37922 hgmapf1oN 37924 |
Copyright terms: Public domain | W3C validator |