| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapfnN | Structured version Visualization version GIF version | ||
| Description: Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hgmapfn.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hgmapfn.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hgmapfn.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hgmapfn.b | ⊢ 𝐵 = (Base‘𝑅) |
| hgmapfn.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| hgmapfn.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| Ref | Expression |
|---|---|
| hgmapfnN | ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7310 | . . 3 ⊢ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))) ∈ V | |
| 2 | eqid 2729 | . . 3 ⊢ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) = (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) | |
| 3 | 1, 2 | fnmpti 6625 | . 2 ⊢ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵 |
| 4 | hgmapfn.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 5 | hgmapfn.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 7 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 8 | hgmapfn.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 9 | hgmapfn.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 10 | eqid 2729 | . . . 4 ⊢ ((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) | |
| 11 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠 ‘((LCDual‘𝐾)‘𝑊)) | |
| 12 | eqid 2729 | . . . 4 ⊢ ((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) | |
| 13 | hgmapfn.g | . . . 4 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
| 14 | hgmapfn.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | hgmapfval 41865 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥))))) |
| 16 | 15 | fneq1d 6575 | . 2 ⊢ (𝜑 → (𝐺 Fn 𝐵 ↔ (𝑘 ∈ 𝐵 ↦ (℩𝑗 ∈ 𝐵 ∀𝑥 ∈ (Base‘𝑈)(((HDMap‘𝐾)‘𝑊)‘(𝑘( ·𝑠 ‘𝑈)𝑥)) = (𝑗( ·𝑠 ‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑥)))) Fn 𝐵)) |
| 17 | 3, 16 | mpbiri 258 | 1 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5173 Fn wfn 6477 ‘cfv 6482 ℩crio 7305 (class class class)co 7349 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 HLchlt 39329 LHypclh 39963 DVecHcdvh 41057 LCDualclcd 41565 HDMapchdma 41771 HGMapchg 41862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-hgmap 41863 |
| This theorem is referenced by: hgmaprnlem1N 41875 hgmaprnN 41880 hgmapf1oN 41882 |
| Copyright terms: Public domain | W3C validator |