| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapval | Structured version Visualization version GIF version | ||
| Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 41861. (Contributed by NM, 25-Mar-2015.) |
| Ref | Expression |
|---|---|
| hgmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hgmapfval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hgmapfval.v | ⊢ 𝑉 = (Base‘𝑈) |
| hgmapfval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| hgmapfval.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hgmapfval.b | ⊢ 𝐵 = (Base‘𝑅) |
| hgmapfval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hgmapfval.s | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
| hgmapfval.m | ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) |
| hgmapfval.i | ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) |
| hgmapfval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) |
| hgmapval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| hgmapval | ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hgmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hgmapfval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hgmapfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hgmapfval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 5 | hgmapfval.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 6 | hgmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 7 | hgmapfval.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 8 | hgmapfval.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
| 9 | hgmapfval.m | . . . 4 ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) | |
| 10 | hgmapfval.i | . . . 4 ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) | |
| 11 | hgmapfval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) | |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hgmapfval 41865 | . . 3 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))) |
| 13 | 12 | fveq1d 6828 | . 2 ⊢ (𝜑 → (𝐼‘𝑋) = ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋)) |
| 14 | hgmapval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 15 | riotaex 7314 | . . 3 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) ∈ V | |
| 16 | fvoveq1 7376 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑀‘(𝑥 · 𝑣)) = (𝑀‘(𝑋 · 𝑣))) | |
| 17 | 16 | eqeq1d 2731 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)) ↔ (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
| 18 | 17 | ralbidv 3152 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)) ↔ ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
| 19 | 18 | riotabidv 7312 | . . . 4 ⊢ (𝑥 = 𝑋 → (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
| 20 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) | |
| 21 | 19, 20 | fvmptg 6932 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) ∈ V) → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
| 22 | 14, 15, 21 | sylancl 586 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
| 23 | 13, 22 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ↦ cmpt 5176 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 Basecbs 17138 Scalarcsca 17182 ·𝑠 cvsca 17183 LHypclh 39963 DVecHcdvh 41057 LCDualclcd 41565 HDMapchdma 41771 HGMapchg 41862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-hgmap 41863 |
| This theorem is referenced by: hgmapcl 41868 hgmapvs 41870 |
| Copyright terms: Public domain | W3C validator |