![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapval | Structured version Visualization version GIF version |
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 41839. (Contributed by NM, 25-Mar-2015.) |
Ref | Expression |
---|---|
hgmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmapfval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmapfval.v | ⊢ 𝑉 = (Base‘𝑈) |
hgmapfval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hgmapfval.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmapfval.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmapfval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hgmapfval.s | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hgmapfval.m | ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) |
hgmapfval.i | ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) |
hgmapfval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) |
hgmapval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
hgmapval | ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hgmapfval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hgmapfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hgmapfval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hgmapfval.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hgmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hgmapfval.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hgmapfval.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | hgmapfval.m | . . . 4 ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) | |
10 | hgmapfval.i | . . . 4 ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) | |
11 | hgmapfval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hgmapfval 41843 | . . 3 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))) |
13 | 12 | fveq1d 6922 | . 2 ⊢ (𝜑 → (𝐼‘𝑋) = ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋)) |
14 | hgmapval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | riotaex 7408 | . . 3 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) ∈ V | |
16 | fvoveq1 7471 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑀‘(𝑥 · 𝑣)) = (𝑀‘(𝑋 · 𝑣))) | |
17 | 16 | eqeq1d 2742 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)) ↔ (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
18 | 17 | ralbidv 3184 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)) ↔ ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
19 | 18 | riotabidv 7406 | . . . 4 ⊢ (𝑥 = 𝑋 → (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
20 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) | |
21 | 19, 20 | fvmptg 7027 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) ∈ V) → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
22 | 14, 15, 21 | sylancl 585 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
23 | 13, 22 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 LHypclh 39941 DVecHcdvh 41035 LCDualclcd 41543 HDMapchdma 41749 HGMapchg 41840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-hgmap 41841 |
This theorem is referenced by: hgmapcl 41846 hgmapvs 41848 |
Copyright terms: Public domain | W3C validator |