Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapval | Structured version Visualization version GIF version |
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 39896. (Contributed by NM, 25-Mar-2015.) |
Ref | Expression |
---|---|
hgmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmapfval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmapfval.v | ⊢ 𝑉 = (Base‘𝑈) |
hgmapfval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hgmapfval.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmapfval.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmapfval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hgmapfval.s | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hgmapfval.m | ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) |
hgmapfval.i | ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) |
hgmapfval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) |
hgmapval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
hgmapval | ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hgmapfval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hgmapfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hgmapfval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hgmapfval.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hgmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hgmapfval.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hgmapfval.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | hgmapfval.m | . . . 4 ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) | |
10 | hgmapfval.i | . . . 4 ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) | |
11 | hgmapfval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hgmapfval 39900 | . . 3 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))) |
13 | 12 | fveq1d 6776 | . 2 ⊢ (𝜑 → (𝐼‘𝑋) = ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋)) |
14 | hgmapval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | riotaex 7236 | . . 3 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) ∈ V | |
16 | fvoveq1 7298 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑀‘(𝑥 · 𝑣)) = (𝑀‘(𝑋 · 𝑣))) | |
17 | 16 | eqeq1d 2740 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)) ↔ (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
18 | 17 | ralbidv 3112 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)) ↔ ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
19 | 18 | riotabidv 7234 | . . . 4 ⊢ (𝑥 = 𝑋 → (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
20 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) | |
21 | 19, 20 | fvmptg 6873 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) ∈ V) → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
22 | 14, 15, 21 | sylancl 586 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
23 | 13, 22 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ↦ cmpt 5157 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 LHypclh 37998 DVecHcdvh 39092 LCDualclcd 39600 HDMapchdma 39806 HGMapchg 39897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-hgmap 39898 |
This theorem is referenced by: hgmapcl 39903 hgmapvs 39905 |
Copyright terms: Public domain | W3C validator |