![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmapval | Structured version Visualization version GIF version |
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 41865. (Contributed by NM, 25-Mar-2015.) |
Ref | Expression |
---|---|
hgmapval.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmapfval.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmapfval.v | ⊢ 𝑉 = (Base‘𝑈) |
hgmapfval.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hgmapfval.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmapfval.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmapfval.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hgmapfval.s | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hgmapfval.m | ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) |
hgmapfval.i | ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) |
hgmapfval.k | ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) |
hgmapval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
hgmapval | ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmapval.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hgmapfval.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hgmapfval.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hgmapfval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hgmapfval.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hgmapfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hgmapfval.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hgmapfval.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | hgmapfval.m | . . . 4 ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) | |
10 | hgmapfval.i | . . . 4 ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) | |
11 | hgmapfval.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | hgmapfval 41869 | . . 3 ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))) |
13 | 12 | fveq1d 6909 | . 2 ⊢ (𝜑 → (𝐼‘𝑋) = ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋)) |
14 | hgmapval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
15 | riotaex 7392 | . . 3 ⊢ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) ∈ V | |
16 | fvoveq1 7454 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑀‘(𝑥 · 𝑣)) = (𝑀‘(𝑋 · 𝑣))) | |
17 | 16 | eqeq1d 2737 | . . . . . 6 ⊢ (𝑥 = 𝑋 → ((𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)) ↔ (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
18 | 17 | ralbidv 3176 | . . . . 5 ⊢ (𝑥 = 𝑋 → (∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)) ↔ ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
19 | 18 | riotabidv 7390 | . . . 4 ⊢ (𝑥 = 𝑋 → (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
20 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) | |
21 | 19, 20 | fvmptg 7014 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))) ∈ V) → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
22 | 14, 15, 21 | sylancl 586 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
23 | 13, 22 | eqtrd 2775 | 1 ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ↦ cmpt 5231 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 Basecbs 17245 Scalarcsca 17301 ·𝑠 cvsca 17302 LHypclh 39967 DVecHcdvh 41061 LCDualclcd 41569 HDMapchdma 41775 HGMapchg 41866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-hgmap 41867 |
This theorem is referenced by: hgmapcl 41872 hgmapvs 41874 |
Copyright terms: Public domain | W3C validator |