Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapval Structured version   Visualization version   GIF version

Theorem hgmapval 41881
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 41876. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h 𝐻 = (LHyp‘𝐾)
hgmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfval.v 𝑉 = (Base‘𝑈)
hgmapfval.t · = ( ·𝑠𝑈)
hgmapfval.r 𝑅 = (Scalar‘𝑈)
hgmapfval.b 𝐵 = (Base‘𝑅)
hgmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hgmapfval.s = ( ·𝑠𝐶)
hgmapfval.m 𝑀 = ((HDMap‘𝐾)‘𝑊)
hgmapfval.i 𝐼 = ((HGMap‘𝐾)‘𝑊)
hgmapfval.k (𝜑 → (𝐾𝑌𝑊𝐻))
hgmapval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
hgmapval (𝜑 → (𝐼𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
Distinct variable groups:   𝑦,𝑣,𝐾   𝑣,𝐵,𝑦   𝑣,𝑀,𝑦   𝑣,𝑈,𝑦   𝑣,𝑉   𝑣,𝑊,𝑦   𝑣,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑣)   𝐶(𝑦,𝑣)   𝑅(𝑦,𝑣)   (𝑦,𝑣)   · (𝑦,𝑣)   𝐻(𝑦,𝑣)   𝐼(𝑦,𝑣)   𝑉(𝑦)   𝑌(𝑦,𝑣)

Proof of Theorem hgmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hgmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hgmapfval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hgmapfval.v . . . 4 𝑉 = (Base‘𝑈)
4 hgmapfval.t . . . 4 · = ( ·𝑠𝑈)
5 hgmapfval.r . . . 4 𝑅 = (Scalar‘𝑈)
6 hgmapfval.b . . . 4 𝐵 = (Base‘𝑅)
7 hgmapfval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hgmapfval.s . . . 4 = ( ·𝑠𝐶)
9 hgmapfval.m . . . 4 𝑀 = ((HDMap‘𝐾)‘𝑊)
10 hgmapfval.i . . . 4 𝐼 = ((HGMap‘𝐾)‘𝑊)
11 hgmapfval.k . . . 4 (𝜑 → (𝐾𝑌𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hgmapfval 41880 . . 3 (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
1312fveq1d 6860 . 2 (𝜑 → (𝐼𝑋) = ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋))
14 hgmapval.x . . 3 (𝜑𝑋𝐵)
15 riotaex 7348 . . 3 (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))) ∈ V
16 fvoveq1 7410 . . . . . . 7 (𝑥 = 𝑋 → (𝑀‘(𝑥 · 𝑣)) = (𝑀‘(𝑋 · 𝑣)))
1716eqeq1d 2731 . . . . . 6 (𝑥 = 𝑋 → ((𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)) ↔ (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
1817ralbidv 3156 . . . . 5 (𝑥 = 𝑋 → (∀𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)) ↔ ∀𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
1918riotabidv 7346 . . . 4 (𝑥 = 𝑋 → (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
20 eqid 2729 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
2119, 20fvmptg 6966 . . 3 ((𝑋𝐵 ∧ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))) ∈ V) → ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
2214, 15, 21sylancl 586 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
2313, 22eqtrd 2764 1 (𝜑 → (𝐼𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cmpt 5188  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  LHypclh 39978  DVecHcdvh 41072  LCDualclcd 41580  HDMapchdma 41786  HGMapchg 41877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-hgmap 41878
This theorem is referenced by:  hgmapcl  41883  hgmapvs  41885
  Copyright terms: Public domain W3C validator