Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapval Structured version   Visualization version   GIF version

Theorem hgmapval 42006
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 42001. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h 𝐻 = (LHyp‘𝐾)
hgmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfval.v 𝑉 = (Base‘𝑈)
hgmapfval.t · = ( ·𝑠𝑈)
hgmapfval.r 𝑅 = (Scalar‘𝑈)
hgmapfval.b 𝐵 = (Base‘𝑅)
hgmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hgmapfval.s = ( ·𝑠𝐶)
hgmapfval.m 𝑀 = ((HDMap‘𝐾)‘𝑊)
hgmapfval.i 𝐼 = ((HGMap‘𝐾)‘𝑊)
hgmapfval.k (𝜑 → (𝐾𝑌𝑊𝐻))
hgmapval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
hgmapval (𝜑 → (𝐼𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
Distinct variable groups:   𝑦,𝑣,𝐾   𝑣,𝐵,𝑦   𝑣,𝑀,𝑦   𝑣,𝑈,𝑦   𝑣,𝑉   𝑣,𝑊,𝑦   𝑣,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑣)   𝐶(𝑦,𝑣)   𝑅(𝑦,𝑣)   (𝑦,𝑣)   · (𝑦,𝑣)   𝐻(𝑦,𝑣)   𝐼(𝑦,𝑣)   𝑉(𝑦)   𝑌(𝑦,𝑣)

Proof of Theorem hgmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hgmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hgmapfval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hgmapfval.v . . . 4 𝑉 = (Base‘𝑈)
4 hgmapfval.t . . . 4 · = ( ·𝑠𝑈)
5 hgmapfval.r . . . 4 𝑅 = (Scalar‘𝑈)
6 hgmapfval.b . . . 4 𝐵 = (Base‘𝑅)
7 hgmapfval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hgmapfval.s . . . 4 = ( ·𝑠𝐶)
9 hgmapfval.m . . . 4 𝑀 = ((HDMap‘𝐾)‘𝑊)
10 hgmapfval.i . . . 4 𝐼 = ((HGMap‘𝐾)‘𝑊)
11 hgmapfval.k . . . 4 (𝜑 → (𝐾𝑌𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hgmapfval 42005 . . 3 (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
1312fveq1d 6830 . 2 (𝜑 → (𝐼𝑋) = ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋))
14 hgmapval.x . . 3 (𝜑𝑋𝐵)
15 riotaex 7313 . . 3 (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))) ∈ V
16 fvoveq1 7375 . . . . . . 7 (𝑥 = 𝑋 → (𝑀‘(𝑥 · 𝑣)) = (𝑀‘(𝑋 · 𝑣)))
1716eqeq1d 2735 . . . . . 6 (𝑥 = 𝑋 → ((𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)) ↔ (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
1817ralbidv 3156 . . . . 5 (𝑥 = 𝑋 → (∀𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)) ↔ ∀𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
1918riotabidv 7311 . . . 4 (𝑥 = 𝑋 → (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
20 eqid 2733 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
2119, 20fvmptg 6933 . . 3 ((𝑋𝐵 ∧ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))) ∈ V) → ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
2214, 15, 21sylancl 586 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
2313, 22eqtrd 2768 1 (𝜑 → (𝐼𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cmpt 5174  cfv 6486  crio 7308  (class class class)co 7352  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167  LHypclh 40103  DVecHcdvh 41197  LCDualclcd 41705  HDMapchdma 41911  HGMapchg 42002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-hgmap 42003
This theorem is referenced by:  hgmapcl  42008  hgmapvs  42010
  Copyright terms: Public domain W3C validator