Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hgmapval Structured version   Visualization version   GIF version

Theorem hgmapval 41870
Description: Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 41865. (Contributed by NM, 25-Mar-2015.)
Hypotheses
Ref Expression
hgmapval.h 𝐻 = (LHyp‘𝐾)
hgmapfval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hgmapfval.v 𝑉 = (Base‘𝑈)
hgmapfval.t · = ( ·𝑠𝑈)
hgmapfval.r 𝑅 = (Scalar‘𝑈)
hgmapfval.b 𝐵 = (Base‘𝑅)
hgmapfval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hgmapfval.s = ( ·𝑠𝐶)
hgmapfval.m 𝑀 = ((HDMap‘𝐾)‘𝑊)
hgmapfval.i 𝐼 = ((HGMap‘𝐾)‘𝑊)
hgmapfval.k (𝜑 → (𝐾𝑌𝑊𝐻))
hgmapval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
hgmapval (𝜑 → (𝐼𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
Distinct variable groups:   𝑦,𝑣,𝐾   𝑣,𝐵,𝑦   𝑣,𝑀,𝑦   𝑣,𝑈,𝑦   𝑣,𝑉   𝑣,𝑊,𝑦   𝑣,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑦,𝑣)   𝐶(𝑦,𝑣)   𝑅(𝑦,𝑣)   (𝑦,𝑣)   · (𝑦,𝑣)   𝐻(𝑦,𝑣)   𝐼(𝑦,𝑣)   𝑉(𝑦)   𝑌(𝑦,𝑣)

Proof of Theorem hgmapval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hgmapval.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hgmapfval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hgmapfval.v . . . 4 𝑉 = (Base‘𝑈)
4 hgmapfval.t . . . 4 · = ( ·𝑠𝑈)
5 hgmapfval.r . . . 4 𝑅 = (Scalar‘𝑈)
6 hgmapfval.b . . . 4 𝐵 = (Base‘𝑅)
7 hgmapfval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hgmapfval.s . . . 4 = ( ·𝑠𝐶)
9 hgmapfval.m . . . 4 𝑀 = ((HDMap‘𝐾)‘𝑊)
10 hgmapfval.i . . . 4 𝐼 = ((HGMap‘𝐾)‘𝑊)
11 hgmapfval.k . . . 4 (𝜑 → (𝐾𝑌𝑊𝐻))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11hgmapfval 41869 . . 3 (𝜑𝐼 = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))))
1312fveq1d 6909 . 2 (𝜑 → (𝐼𝑋) = ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋))
14 hgmapval.x . . 3 (𝜑𝑋𝐵)
15 riotaex 7392 . . 3 (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))) ∈ V
16 fvoveq1 7454 . . . . . . 7 (𝑥 = 𝑋 → (𝑀‘(𝑥 · 𝑣)) = (𝑀‘(𝑋 · 𝑣)))
1716eqeq1d 2737 . . . . . 6 (𝑥 = 𝑋 → ((𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)) ↔ (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
1817ralbidv 3176 . . . . 5 (𝑥 = 𝑋 → (∀𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)) ↔ ∀𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
1918riotabidv 7390 . . . 4 (𝑥 = 𝑋 → (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
20 eqid 2735 . . . 4 (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣)))) = (𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))
2119, 20fvmptg 7014 . . 3 ((𝑋𝐵 ∧ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))) ∈ V) → ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
2214, 15, 21sylancl 586 . 2 (𝜑 → ((𝑥𝐵 ↦ (𝑦𝐵𝑣𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 (𝑀𝑣))))‘𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
2313, 22eqtrd 2775 1 (𝜑 → (𝐼𝑋) = (𝑦𝐵𝑣𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 (𝑀𝑣))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cmpt 5231  cfv 6563  crio 7387  (class class class)co 7431  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  LHypclh 39967  DVecHcdvh 41061  LCDualclcd 41569  HDMapchdma 41775  HGMapchg 41866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-hgmap 41867
This theorem is referenced by:  hgmapcl  41872  hgmapvs  41874
  Copyright terms: Public domain W3C validator