| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hl0lt1N | Structured version Visualization version GIF version | ||
| Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hl0lt1.s | ⊢ < = (lt‘𝐾) |
| hl0lt1.z | ⊢ 0 = (0.‘𝐾) |
| hl0lt1.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| hl0lt1N | ⊢ (𝐾 ∈ HL → 0 < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | hl0lt1.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 3 | hl0lt1.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | hl0lt1.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 5 | 1, 2, 3, 4 | hlhgt2 39354 | . 2 ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥 ∧ 𝑥 < 1 )) |
| 6 | hlpos 39330 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ Poset) |
| 8 | hlop 39326 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP) |
| 10 | 1, 3 | op0cl 39148 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾)) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾)) | |
| 13 | 1, 4 | op1cl 39149 | . . . . 5 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 14 | 9, 13 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾)) |
| 15 | 1, 2 | plttr 18350 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 1 ∈ (Base‘𝐾))) → (( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
| 16 | 7, 11, 12, 14, 15 | syl13anc 1374 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
| 17 | 16 | rexlimdva 3141 | . 2 ⊢ (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
| 18 | 5, 17 | mpd 15 | 1 ⊢ (𝐾 ∈ HL → 0 < 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ‘cfv 6530 Basecbs 17226 Posetcpo 18317 ltcplt 18318 0.cp0 18431 1.cp1 18432 OPcops 39136 HLchlt 39314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-p0 18433 df-p1 18434 df-lat 18440 df-oposet 39140 df-ol 39142 df-oml 39143 df-atl 39262 df-cvlat 39286 df-hlat 39315 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |