| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hl0lt1N | Structured version Visualization version GIF version | ||
| Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hl0lt1.s | ⊢ < = (lt‘𝐾) |
| hl0lt1.z | ⊢ 0 = (0.‘𝐾) |
| hl0lt1.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| hl0lt1N | ⊢ (𝐾 ∈ HL → 0 < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | hl0lt1.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 3 | hl0lt1.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | hl0lt1.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 5 | 1, 2, 3, 4 | hlhgt2 39356 | . 2 ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥 ∧ 𝑥 < 1 )) |
| 6 | hlpos 39332 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ Poset) |
| 8 | hlop 39328 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP) |
| 10 | 1, 3 | op0cl 39150 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾)) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾)) | |
| 13 | 1, 4 | op1cl 39151 | . . . . 5 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 14 | 9, 13 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾)) |
| 15 | 1, 2 | plttr 18277 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 1 ∈ (Base‘𝐾))) → (( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
| 16 | 7, 11, 12, 14, 15 | syl13anc 1374 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
| 17 | 16 | rexlimdva 3134 | . 2 ⊢ (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
| 18 | 5, 17 | mpd 15 | 1 ⊢ (𝐾 ∈ HL → 0 < 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 Basecbs 17155 Posetcpo 18244 ltcplt 18245 0.cp0 18358 1.cp1 18359 OPcops 39138 HLchlt 39316 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-p0 18360 df-p1 18361 df-lat 18367 df-oposet 39142 df-ol 39144 df-oml 39145 df-atl 39264 df-cvlat 39288 df-hlat 39317 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |