![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hl0lt1N | Structured version Visualization version GIF version |
Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hl0lt1.s | ⊢ < = (lt‘𝐾) |
hl0lt1.z | ⊢ 0 = (0.‘𝐾) |
hl0lt1.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
hl0lt1N | ⊢ (𝐾 ∈ HL → 0 < 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | hl0lt1.s | . . 3 ⊢ < = (lt‘𝐾) | |
3 | hl0lt1.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
4 | hl0lt1.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
5 | 1, 2, 3, 4 | hlhgt2 38994 | . 2 ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥 ∧ 𝑥 < 1 )) |
6 | hlpos 38970 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | |
7 | 6 | adantr 479 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ Poset) |
8 | hlop 38966 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP) |
10 | 1, 3 | op0cl 38788 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾)) |
12 | simpr 483 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾)) | |
13 | 1, 4 | op1cl 38789 | . . . . 5 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
14 | 9, 13 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾)) |
15 | 1, 2 | plttr 18342 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 1 ∈ (Base‘𝐾))) → (( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
16 | 7, 11, 12, 14, 15 | syl13anc 1369 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
17 | 16 | rexlimdva 3144 | . 2 ⊢ (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
18 | 5, 17 | mpd 15 | 1 ⊢ (𝐾 ∈ HL → 0 < 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 class class class wbr 5149 ‘cfv 6549 Basecbs 17188 Posetcpo 18307 ltcplt 18308 0.cp0 18423 1.cp1 18424 OPcops 38776 HLchlt 38954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-proset 18295 df-poset 18313 df-plt 18330 df-lub 18346 df-glb 18347 df-p0 18425 df-p1 18426 df-lat 18432 df-oposet 38780 df-ol 38782 df-oml 38783 df-atl 38902 df-cvlat 38926 df-hlat 38955 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |