| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hl0lt1N | Structured version Visualization version GIF version | ||
| Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hl0lt1.s | ⊢ < = (lt‘𝐾) |
| hl0lt1.z | ⊢ 0 = (0.‘𝐾) |
| hl0lt1.u | ⊢ 1 = (1.‘𝐾) |
| Ref | Expression |
|---|---|
| hl0lt1N | ⊢ (𝐾 ∈ HL → 0 < 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | hl0lt1.s | . . 3 ⊢ < = (lt‘𝐾) | |
| 3 | hl0lt1.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
| 4 | hl0lt1.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
| 5 | 1, 2, 3, 4 | hlhgt2 39372 | . 2 ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥 ∧ 𝑥 < 1 )) |
| 6 | hlpos 39349 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ Poset) |
| 8 | hlop 39345 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP) |
| 10 | 1, 3 | op0cl 39167 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾)) |
| 12 | simpr 484 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾)) | |
| 13 | 1, 4 | op1cl 39168 | . . . . 5 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
| 14 | 9, 13 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾)) |
| 15 | 1, 2 | plttr 18246 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 1 ∈ (Base‘𝐾))) → (( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
| 16 | 7, 11, 12, 14, 15 | syl13anc 1374 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
| 17 | 16 | rexlimdva 3130 | . 2 ⊢ (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
| 18 | 5, 17 | mpd 15 | 1 ⊢ (𝐾 ∈ HL → 0 < 1 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 Posetcpo 18213 ltcplt 18214 0.cp0 18327 1.cp1 18328 OPcops 39155 HLchlt 39333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-p0 18329 df-p1 18330 df-lat 18338 df-oposet 39159 df-ol 39161 df-oml 39162 df-atl 39281 df-cvlat 39305 df-hlat 39334 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |