Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hl0lt1N | Structured version Visualization version GIF version |
Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hl0lt1.s | ⊢ < = (lt‘𝐾) |
hl0lt1.z | ⊢ 0 = (0.‘𝐾) |
hl0lt1.u | ⊢ 1 = (1.‘𝐾) |
Ref | Expression |
---|---|
hl0lt1N | ⊢ (𝐾 ∈ HL → 0 < 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | hl0lt1.s | . . 3 ⊢ < = (lt‘𝐾) | |
3 | hl0lt1.z | . . 3 ⊢ 0 = (0.‘𝐾) | |
4 | hl0lt1.u | . . 3 ⊢ 1 = (1.‘𝐾) | |
5 | 1, 2, 3, 4 | hlhgt2 37412 | . 2 ⊢ (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥 ∧ 𝑥 < 1 )) |
6 | hlpos 37389 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Poset) | |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ Poset) |
8 | hlop 37385 | . . . . . 6 ⊢ (𝐾 ∈ HL → 𝐾 ∈ OP) | |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP) |
10 | 1, 3 | op0cl 37207 | . . . . 5 ⊢ (𝐾 ∈ OP → 0 ∈ (Base‘𝐾)) |
11 | 9, 10 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾)) |
12 | simpr 485 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾)) | |
13 | 1, 4 | op1cl 37208 | . . . . 5 ⊢ (𝐾 ∈ OP → 1 ∈ (Base‘𝐾)) |
14 | 9, 13 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾)) |
15 | 1, 2 | plttr 18071 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 1 ∈ (Base‘𝐾))) → (( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
16 | 7, 11, 12, 14, 15 | syl13anc 1371 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
17 | 16 | rexlimdva 3215 | . 2 ⊢ (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥 ∧ 𝑥 < 1 ) → 0 < 1 )) |
18 | 5, 17 | mpd 15 | 1 ⊢ (𝐾 ∈ HL → 0 < 1 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃wrex 3067 class class class wbr 5079 ‘cfv 6432 Basecbs 16923 Posetcpo 18036 ltcplt 18037 0.cp0 18152 1.cp1 18153 OPcops 37195 HLchlt 37373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-proset 18024 df-poset 18042 df-plt 18059 df-lub 18075 df-glb 18076 df-p0 18154 df-p1 18155 df-lat 18161 df-oposet 37199 df-ol 37201 df-oml 37202 df-atl 37321 df-cvlat 37345 df-hlat 37374 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |