Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hl0lt1N Structured version   Visualization version   GIF version

Theorem hl0lt1N 36686
Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hl0lt1.s < = (lt‘𝐾)
hl0lt1.z 0 = (0.‘𝐾)
hl0lt1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
hl0lt1N (𝐾 ∈ HL → 0 < 1 )

Proof of Theorem hl0lt1N
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 hl0lt1.s . . 3 < = (lt‘𝐾)
3 hl0lt1.z . . 3 0 = (0.‘𝐾)
4 hl0lt1.u . . 3 1 = (1.‘𝐾)
51, 2, 3, 4hlhgt2 36685 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥𝑥 < 1 ))
6 hlpos 36662 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Poset)
76adantr 484 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ Poset)
8 hlop 36658 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
98adantr 484 . . . . 5 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP)
101, 3op0cl 36480 . . . . 5 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
119, 10syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾))
12 simpr 488 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
131, 4op1cl 36481 . . . . 5 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
149, 13syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾))
151, 2plttr 17572 . . . 4 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 1 ∈ (Base‘𝐾))) → (( 0 < 𝑥𝑥 < 1 ) → 0 < 1 ))
167, 11, 12, 14, 15syl13anc 1369 . . 3 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (( 0 < 𝑥𝑥 < 1 ) → 0 < 1 ))
1716rexlimdva 3243 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥𝑥 < 1 ) → 0 < 1 ))
185, 17mpd 15 1 (𝐾 ∈ HL → 0 < 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107   class class class wbr 5030  cfv 6324  Basecbs 16475  Posetcpo 17542  ltcplt 17543  0.cp0 17639  1.cp1 17640  OPcops 36468  HLchlt 36646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-p0 17641  df-p1 17642  df-lat 17648  df-oposet 36472  df-ol 36474  df-oml 36475  df-atl 36594  df-cvlat 36618  df-hlat 36647
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator