Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hl0lt1N Structured version   Visualization version   GIF version

Theorem hl0lt1N 39355
Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hl0lt1.s < = (lt‘𝐾)
hl0lt1.z 0 = (0.‘𝐾)
hl0lt1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
hl0lt1N (𝐾 ∈ HL → 0 < 1 )

Proof of Theorem hl0lt1N
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 hl0lt1.s . . 3 < = (lt‘𝐾)
3 hl0lt1.z . . 3 0 = (0.‘𝐾)
4 hl0lt1.u . . 3 1 = (1.‘𝐾)
51, 2, 3, 4hlhgt2 39354 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥𝑥 < 1 ))
6 hlpos 39330 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Poset)
76adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ Poset)
8 hlop 39326 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
98adantr 480 . . . . 5 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP)
101, 3op0cl 39148 . . . . 5 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
119, 10syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾))
12 simpr 484 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
131, 4op1cl 39149 . . . . 5 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
149, 13syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾))
151, 2plttr 18350 . . . 4 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 1 ∈ (Base‘𝐾))) → (( 0 < 𝑥𝑥 < 1 ) → 0 < 1 ))
167, 11, 12, 14, 15syl13anc 1374 . . 3 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (( 0 < 𝑥𝑥 < 1 ) → 0 < 1 ))
1716rexlimdva 3141 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥𝑥 < 1 ) → 0 < 1 ))
185, 17mpd 15 1 (𝐾 ∈ HL → 0 < 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wrex 3060   class class class wbr 5119  cfv 6530  Basecbs 17226  Posetcpo 18317  ltcplt 18318  0.cp0 18431  1.cp1 18432  OPcops 39136  HLchlt 39314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-proset 18304  df-poset 18323  df-plt 18338  df-lub 18354  df-glb 18355  df-p0 18433  df-p1 18434  df-lat 18440  df-oposet 39140  df-ol 39142  df-oml 39143  df-atl 39262  df-cvlat 39286  df-hlat 39315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator