Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hl0lt1N Structured version   Visualization version   GIF version

Theorem hl0lt1N 39373
Description: Lattice 0 is less than lattice 1 in a Hilbert lattice. (Contributed by NM, 4-Dec-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
hl0lt1.s < = (lt‘𝐾)
hl0lt1.z 0 = (0.‘𝐾)
hl0lt1.u 1 = (1.‘𝐾)
Assertion
Ref Expression
hl0lt1N (𝐾 ∈ HL → 0 < 1 )

Proof of Theorem hl0lt1N
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 hl0lt1.s . . 3 < = (lt‘𝐾)
3 hl0lt1.z . . 3 0 = (0.‘𝐾)
4 hl0lt1.u . . 3 1 = (1.‘𝐾)
51, 2, 3, 4hlhgt2 39372 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥𝑥 < 1 ))
6 hlpos 39349 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Poset)
76adantr 480 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ Poset)
8 hlop 39345 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OP)
98adantr 480 . . . . 5 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP)
101, 3op0cl 39167 . . . . 5 (𝐾 ∈ OP → 0 ∈ (Base‘𝐾))
119, 10syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 0 ∈ (Base‘𝐾))
12 simpr 484 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
131, 4op1cl 39168 . . . . 5 (𝐾 ∈ OP → 1 ∈ (Base‘𝐾))
149, 13syl 17 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 1 ∈ (Base‘𝐾))
151, 2plttr 18246 . . . 4 ((𝐾 ∈ Poset ∧ ( 0 ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 1 ∈ (Base‘𝐾))) → (( 0 < 𝑥𝑥 < 1 ) → 0 < 1 ))
167, 11, 12, 14, 15syl13anc 1374 . . 3 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (( 0 < 𝑥𝑥 < 1 ) → 0 < 1 ))
1716rexlimdva 3130 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)( 0 < 𝑥𝑥 < 1 ) → 0 < 1 ))
185, 17mpd 15 1 (𝐾 ∈ HL → 0 < 1 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053   class class class wbr 5092  cfv 6482  Basecbs 17120  Posetcpo 18213  ltcplt 18214  0.cp0 18327  1.cp1 18328  OPcops 39155  HLchlt 39333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-p0 18329  df-p1 18330  df-lat 18338  df-oposet 39159  df-ol 39161  df-oml 39162  df-atl 39281  df-cvlat 39305  df-hlat 39334
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator