HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadd12i Structured version   Visualization version   GIF version

Theorem hoadd12i 31713
Description: Commutative/associative law for Hilbert space operator sum that swaps the first two terms. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoadd12i (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇))

Proof of Theorem hoadd12i
StepHypRef Expression
1 hods.1 . . . 4 𝑅: ℋ⟶ ℋ
2 hods.2 . . . 4 𝑆: ℋ⟶ ℋ
31, 2hoaddcomi 31708 . . 3 (𝑅 +op 𝑆) = (𝑆 +op 𝑅)
43oveq1i 7400 . 2 ((𝑅 +op 𝑆) +op 𝑇) = ((𝑆 +op 𝑅) +op 𝑇)
5 hods.3 . . 3 𝑇: ℋ⟶ ℋ
61, 2, 5hoaddassi 31712 . 2 ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))
72, 1, 5hoaddassi 31712 . 2 ((𝑆 +op 𝑅) +op 𝑇) = (𝑆 +op (𝑅 +op 𝑇))
84, 6, 73eqtr3i 2761 1 (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wf 6510  (class class class)co 7390  chba 30855   +op chos 30874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-hosum 31666
This theorem is referenced by:  ho0subi  31731
  Copyright terms: Public domain W3C validator