| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoadd12i | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for Hilbert space operator sum that swaps the first two terms. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoadd12i | ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | . . . 4 ⊢ 𝑅: ℋ⟶ ℋ | |
| 2 | hods.2 | . . . 4 ⊢ 𝑆: ℋ⟶ ℋ | |
| 3 | 1, 2 | hoaddcomi 31754 | . . 3 ⊢ (𝑅 +op 𝑆) = (𝑆 +op 𝑅) |
| 4 | 3 | oveq1i 7362 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑆 +op 𝑅) +op 𝑇) |
| 5 | hods.3 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
| 6 | 1, 2, 5 | hoaddassi 31758 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)) |
| 7 | 2, 1, 5 | hoaddassi 31758 | . 2 ⊢ ((𝑆 +op 𝑅) +op 𝑇) = (𝑆 +op (𝑅 +op 𝑇)) |
| 8 | 4, 6, 7 | 3eqtr3i 2764 | 1 ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⟶wf 6482 (class class class)co 7352 ℋchba 30901 +op chos 30920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-hilex 30981 ax-hfvadd 30982 ax-hvcom 30983 ax-hvass 30984 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-hosum 31712 |
| This theorem is referenced by: ho0subi 31777 |
| Copyright terms: Public domain | W3C validator |