| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoadd12i | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for Hilbert space operator sum that swaps the first two terms. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoadd12i | ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | . . . 4 ⊢ 𝑅: ℋ⟶ ℋ | |
| 2 | hods.2 | . . . 4 ⊢ 𝑆: ℋ⟶ ℋ | |
| 3 | 1, 2 | hoaddcomi 31734 | . . 3 ⊢ (𝑅 +op 𝑆) = (𝑆 +op 𝑅) |
| 4 | 3 | oveq1i 7363 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑆 +op 𝑅) +op 𝑇) |
| 5 | hods.3 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
| 6 | 1, 2, 5 | hoaddassi 31738 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)) |
| 7 | 2, 1, 5 | hoaddassi 31738 | . 2 ⊢ ((𝑆 +op 𝑅) +op 𝑇) = (𝑆 +op (𝑅 +op 𝑇)) |
| 8 | 4, 6, 7 | 3eqtr3i 2760 | 1 ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⟶wf 6482 (class class class)co 7353 ℋchba 30881 +op chos 30900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-hilex 30961 ax-hfvadd 30962 ax-hvcom 30963 ax-hvass 30964 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-hosum 31692 |
| This theorem is referenced by: ho0subi 31757 |
| Copyright terms: Public domain | W3C validator |