| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoadd12i | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for Hilbert space operator sum that swaps the first two terms. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoadd12i | ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.1 | . . . 4 ⊢ 𝑅: ℋ⟶ ℋ | |
| 2 | hods.2 | . . . 4 ⊢ 𝑆: ℋ⟶ ℋ | |
| 3 | 1, 2 | hoaddcomi 31758 | . . 3 ⊢ (𝑅 +op 𝑆) = (𝑆 +op 𝑅) |
| 4 | 3 | oveq1i 7420 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑆 +op 𝑅) +op 𝑇) |
| 5 | hods.3 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
| 6 | 1, 2, 5 | hoaddassi 31762 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)) |
| 7 | 2, 1, 5 | hoaddassi 31762 | . 2 ⊢ ((𝑆 +op 𝑅) +op 𝑇) = (𝑆 +op (𝑅 +op 𝑇)) |
| 8 | 4, 6, 7 | 3eqtr3i 2767 | 1 ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⟶wf 6532 (class class class)co 7410 ℋchba 30905 +op chos 30924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-hosum 31716 |
| This theorem is referenced by: ho0subi 31781 |
| Copyright terms: Public domain | W3C validator |