Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hoadd12i | Structured version Visualization version GIF version |
Description: Commutative/associative law for Hilbert space operator sum that swaps the first two terms. (Contributed by NM, 27-Aug-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
Ref | Expression |
---|---|
hoadd12i | ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hods.1 | . . . 4 ⊢ 𝑅: ℋ⟶ ℋ | |
2 | hods.2 | . . . 4 ⊢ 𝑆: ℋ⟶ ℋ | |
3 | 1, 2 | hoaddcomi 30134 | . . 3 ⊢ (𝑅 +op 𝑆) = (𝑆 +op 𝑅) |
4 | 3 | oveq1i 7285 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑆 +op 𝑅) +op 𝑇) |
5 | hods.3 | . . 3 ⊢ 𝑇: ℋ⟶ ℋ | |
6 | 1, 2, 5 | hoaddassi 30138 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)) |
7 | 2, 1, 5 | hoaddassi 30138 | . 2 ⊢ ((𝑆 +op 𝑅) +op 𝑇) = (𝑆 +op (𝑅 +op 𝑇)) |
8 | 4, 6, 7 | 3eqtr3i 2774 | 1 ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑆 +op (𝑅 +op 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⟶wf 6429 (class class class)co 7275 ℋchba 29281 +op chos 29300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-hilex 29361 ax-hfvadd 29362 ax-hvcom 29363 ax-hvass 29364 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-hosum 30092 |
This theorem is referenced by: ho0subi 30157 |
Copyright terms: Public domain | W3C validator |