HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadd32i Structured version   Visualization version   GIF version

Theorem hoadd32i 31757
Description: Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoadd32i ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆)

Proof of Theorem hoadd32i
StepHypRef Expression
1 hods.2 . . . 4 𝑆: ℋ⟶ ℋ
2 hods.3 . . . 4 𝑇: ℋ⟶ ℋ
31, 2hoaddcomi 31751 . . 3 (𝑆 +op 𝑇) = (𝑇 +op 𝑆)
43oveq2i 7380 . 2 (𝑅 +op (𝑆 +op 𝑇)) = (𝑅 +op (𝑇 +op 𝑆))
5 hods.1 . . 3 𝑅: ℋ⟶ ℋ
65, 1, 2hoaddassi 31755 . 2 ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))
75, 2, 1hoaddassi 31755 . 2 ((𝑅 +op 𝑇) +op 𝑆) = (𝑅 +op (𝑇 +op 𝑆))
84, 6, 73eqtr4i 2762 1 ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wf 6495  (class class class)co 7369  chba 30898   +op chos 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-hilex 30978  ax-hfvadd 30979  ax-hvcom 30980  ax-hvass 30981
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-hosum 31709
This theorem is referenced by:  hosubeq0i  31805
  Copyright terms: Public domain W3C validator