| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoadd32i | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoadd32i | ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.2 | . . . 4 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | hods.3 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | 1, 2 | hoaddcomi 31752 | . . 3 ⊢ (𝑆 +op 𝑇) = (𝑇 +op 𝑆) |
| 4 | 3 | oveq2i 7357 | . 2 ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑅 +op (𝑇 +op 𝑆)) |
| 5 | hods.1 | . . 3 ⊢ 𝑅: ℋ⟶ ℋ | |
| 6 | 5, 1, 2 | hoaddassi 31756 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)) |
| 7 | 5, 2, 1 | hoaddassi 31756 | . 2 ⊢ ((𝑅 +op 𝑇) +op 𝑆) = (𝑅 +op (𝑇 +op 𝑆)) |
| 8 | 4, 6, 7 | 3eqtr4i 2764 | 1 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⟶wf 6477 (class class class)co 7346 ℋchba 30899 +op chos 30918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-hilex 30979 ax-hfvadd 30980 ax-hvcom 30981 ax-hvass 30982 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-hosum 31710 |
| This theorem is referenced by: hosubeq0i 31806 |
| Copyright terms: Public domain | W3C validator |