| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoadd32i | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoadd32i | ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.2 | . . . 4 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | hods.3 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | 1, 2 | hoaddcomi 31751 | . . 3 ⊢ (𝑆 +op 𝑇) = (𝑇 +op 𝑆) |
| 4 | 3 | oveq2i 7380 | . 2 ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑅 +op (𝑇 +op 𝑆)) |
| 5 | hods.1 | . . 3 ⊢ 𝑅: ℋ⟶ ℋ | |
| 6 | 5, 1, 2 | hoaddassi 31755 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)) |
| 7 | 5, 2, 1 | hoaddassi 31755 | . 2 ⊢ ((𝑅 +op 𝑇) +op 𝑆) = (𝑅 +op (𝑇 +op 𝑆)) |
| 8 | 4, 6, 7 | 3eqtr4i 2762 | 1 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⟶wf 6495 (class class class)co 7369 ℋchba 30898 +op chos 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-hilex 30978 ax-hfvadd 30979 ax-hvcom 30980 ax-hvass 30981 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-hosum 31709 |
| This theorem is referenced by: hosubeq0i 31805 |
| Copyright terms: Public domain | W3C validator |