HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadd32i Structured version   Visualization version   GIF version

Theorem hoadd32i 31722
Description: Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoadd32i ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆)

Proof of Theorem hoadd32i
StepHypRef Expression
1 hods.2 . . . 4 𝑆: ℋ⟶ ℋ
2 hods.3 . . . 4 𝑇: ℋ⟶ ℋ
31, 2hoaddcomi 31716 . . 3 (𝑆 +op 𝑇) = (𝑇 +op 𝑆)
43oveq2i 7360 . 2 (𝑅 +op (𝑆 +op 𝑇)) = (𝑅 +op (𝑇 +op 𝑆))
5 hods.1 . . 3 𝑅: ℋ⟶ ℋ
65, 1, 2hoaddassi 31720 . 2 ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))
75, 2, 1hoaddassi 31720 . 2 ((𝑅 +op 𝑇) +op 𝑆) = (𝑅 +op (𝑇 +op 𝑆))
84, 6, 73eqtr4i 2762 1 ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wf 6478  (class class class)co 7349  chba 30863   +op chos 30882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-hosum 31674
This theorem is referenced by:  hosubeq0i  31770
  Copyright terms: Public domain W3C validator