| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hoadd32i | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hods.1 | ⊢ 𝑅: ℋ⟶ ℋ |
| hods.2 | ⊢ 𝑆: ℋ⟶ ℋ |
| hods.3 | ⊢ 𝑇: ℋ⟶ ℋ |
| Ref | Expression |
|---|---|
| hoadd32i | ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hods.2 | . . . 4 ⊢ 𝑆: ℋ⟶ ℋ | |
| 2 | hods.3 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ | |
| 3 | 1, 2 | hoaddcomi 31687 | . . 3 ⊢ (𝑆 +op 𝑇) = (𝑇 +op 𝑆) |
| 4 | 3 | oveq2i 7411 | . 2 ⊢ (𝑅 +op (𝑆 +op 𝑇)) = (𝑅 +op (𝑇 +op 𝑆)) |
| 5 | hods.1 | . . 3 ⊢ 𝑅: ℋ⟶ ℋ | |
| 6 | 5, 1, 2 | hoaddassi 31691 | . 2 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇)) |
| 7 | 5, 2, 1 | hoaddassi 31691 | . 2 ⊢ ((𝑅 +op 𝑇) +op 𝑆) = (𝑅 +op (𝑇 +op 𝑆)) |
| 8 | 4, 6, 7 | 3eqtr4i 2767 | 1 ⊢ ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⟶wf 6524 (class class class)co 7400 ℋchba 30834 +op chos 30853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-hilex 30914 ax-hfvadd 30915 ax-hvcom 30916 ax-hvass 30917 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-map 8837 df-hosum 31645 |
| This theorem is referenced by: hosubeq0i 31741 |
| Copyright terms: Public domain | W3C validator |