HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hoadd32i Structured version   Visualization version   GIF version

Theorem hoadd32i 31807
Description: Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
hods.1 𝑅: ℋ⟶ ℋ
hods.2 𝑆: ℋ⟶ ℋ
hods.3 𝑇: ℋ⟶ ℋ
Assertion
Ref Expression
hoadd32i ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆)

Proof of Theorem hoadd32i
StepHypRef Expression
1 hods.2 . . . 4 𝑆: ℋ⟶ ℋ
2 hods.3 . . . 4 𝑇: ℋ⟶ ℋ
31, 2hoaddcomi 31801 . . 3 (𝑆 +op 𝑇) = (𝑇 +op 𝑆)
43oveq2i 7442 . 2 (𝑅 +op (𝑆 +op 𝑇)) = (𝑅 +op (𝑇 +op 𝑆))
5 hods.1 . . 3 𝑅: ℋ⟶ ℋ
65, 1, 2hoaddassi 31805 . 2 ((𝑅 +op 𝑆) +op 𝑇) = (𝑅 +op (𝑆 +op 𝑇))
75, 2, 1hoaddassi 31805 . 2 ((𝑅 +op 𝑇) +op 𝑆) = (𝑅 +op (𝑇 +op 𝑆))
84, 6, 73eqtr4i 2773 1 ((𝑅 +op 𝑆) +op 𝑇) = ((𝑅 +op 𝑇) +op 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wf 6559  (class class class)co 7431  chba 30948   +op chos 30967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-hosum 31759
This theorem is referenced by:  hosubeq0i  31855
  Copyright terms: Public domain W3C validator