Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspf Structured version   Visualization version   GIF version

Theorem hoidifhspf 45632
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspf.d 𝐷 = (π‘₯ ∈ ℝ ↦ (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘₯ ≀ (π‘Žβ€˜π‘˜), (π‘Žβ€˜π‘˜), π‘₯), (π‘Žβ€˜π‘˜)))))
hoidifhspf.y (πœ‘ β†’ π‘Œ ∈ ℝ)
hoidifhspf.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
hoidifhspf.a (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)
Assertion
Ref Expression
hoidifhspf (πœ‘ β†’ ((π·β€˜π‘Œ)β€˜π΄):π‘‹βŸΆβ„)
Distinct variable groups:   𝐴,π‘Ž,π‘˜   𝐾,π‘Ž,π‘₯   𝑋,π‘Ž,π‘˜,π‘₯   π‘Œ,π‘Ž,π‘˜,π‘₯   πœ‘,π‘Ž,π‘˜,π‘₯
Allowed substitution hints:   𝐴(π‘₯)   𝐷(π‘₯,π‘˜,π‘Ž)   𝐾(π‘˜)   𝑉(π‘₯,π‘˜,π‘Ž)

Proof of Theorem hoidifhspf
StepHypRef Expression
1 hoidifhspf.a . . . . . 6 (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)
21ffvelcdmda 7085 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ (π΄β€˜π‘˜) ∈ ℝ)
3 hoidifhspf.y . . . . . 6 (πœ‘ β†’ π‘Œ ∈ ℝ)
43adantr 479 . . . . 5 ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ π‘Œ ∈ ℝ)
52, 4ifcld 4573 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ if(π‘Œ ≀ (π΄β€˜π‘˜), (π΄β€˜π‘˜), π‘Œ) ∈ ℝ)
65, 2ifcld 4573 . . 3 ((πœ‘ ∧ π‘˜ ∈ 𝑋) β†’ if(π‘˜ = 𝐾, if(π‘Œ ≀ (π΄β€˜π‘˜), (π΄β€˜π‘˜), π‘Œ), (π΄β€˜π‘˜)) ∈ ℝ)
76fmpttd 7115 . 2 (πœ‘ β†’ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘Œ ≀ (π΄β€˜π‘˜), (π΄β€˜π‘˜), π‘Œ), (π΄β€˜π‘˜))):π‘‹βŸΆβ„)
8 hoidifhspf.d . . . 4 𝐷 = (π‘₯ ∈ ℝ ↦ (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘₯ ≀ (π‘Žβ€˜π‘˜), (π‘Žβ€˜π‘˜), π‘₯), (π‘Žβ€˜π‘˜)))))
9 hoidifhspf.x . . . 4 (πœ‘ β†’ 𝑋 ∈ 𝑉)
108, 3, 9, 1hoidifhspval2 45629 . . 3 (πœ‘ β†’ ((π·β€˜π‘Œ)β€˜π΄) = (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘Œ ≀ (π΄β€˜π‘˜), (π΄β€˜π‘˜), π‘Œ), (π΄β€˜π‘˜))))
1110feq1d 6701 . 2 (πœ‘ β†’ (((π·β€˜π‘Œ)β€˜π΄):π‘‹βŸΆβ„ ↔ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘Œ ≀ (π΄β€˜π‘˜), (π΄β€˜π‘˜), π‘Œ), (π΄β€˜π‘˜))):π‘‹βŸΆβ„))
127, 11mpbird 256 1 (πœ‘ β†’ ((π·β€˜π‘Œ)β€˜π΄):π‘‹βŸΆβ„)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  ifcif 4527   class class class wbr 5147   ↦ cmpt 5230  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411   ↑m cmap 8822  β„cr 11111   ≀ cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824
This theorem is referenced by:  hoidifhspdmvle  45634  hspmbllem1  45640  hspmbllem2  45641
  Copyright terms: Public domain W3C validator