Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspf Structured version   Visualization version   GIF version

Theorem hoidifhspf 44046
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspf.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
hoidifhspf.y (𝜑𝑌 ∈ ℝ)
hoidifhspf.x (𝜑𝑋𝑉)
hoidifhspf.a (𝜑𝐴:𝑋⟶ℝ)
Assertion
Ref Expression
hoidifhspf (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
Distinct variable groups:   𝐴,𝑎,𝑘   𝐾,𝑎,𝑥   𝑋,𝑎,𝑘,𝑥   𝑌,𝑎,𝑘,𝑥   𝜑,𝑎,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑘,𝑎)   𝐾(𝑘)   𝑉(𝑥,𝑘,𝑎)

Proof of Theorem hoidifhspf
StepHypRef Expression
1 hoidifhspf.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
21ffvelrnda 6943 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3 hoidifhspf.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
43adantr 480 . . . . 5 ((𝜑𝑘𝑋) → 𝑌 ∈ ℝ)
52, 4ifcld 4502 . . . 4 ((𝜑𝑘𝑋) → if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌) ∈ ℝ)
65, 2ifcld 4502 . . 3 ((𝜑𝑘𝑋) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) ∈ ℝ)
76fmpttd 6971 . 2 (𝜑 → (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))):𝑋⟶ℝ)
8 hoidifhspf.d . . . 4 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
9 hoidifhspf.x . . . 4 (𝜑𝑋𝑉)
108, 3, 9, 1hoidifhspval2 44043 . . 3 (𝜑 → ((𝐷𝑌)‘𝐴) = (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))))
1110feq1d 6569 . 2 (𝜑 → (((𝐷𝑌)‘𝐴):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))):𝑋⟶ℝ))
127, 11mpbird 256 1 (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  ifcif 4456   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cr 10801  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575
This theorem is referenced by:  hoidifhspdmvle  44048  hspmbllem1  44054  hspmbllem2  44055
  Copyright terms: Public domain W3C validator