| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspf | Structured version Visualization version GIF version | ||
| Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| hoidifhspf.d | ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) |
| hoidifhspf.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
| hoidifhspf.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| hoidifhspf.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| Ref | Expression |
|---|---|
| hoidifhspf | ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴):𝑋⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoidifhspf.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
| 2 | 1 | ffvelcdmda 7018 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
| 3 | hoidifhspf.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑌 ∈ ℝ) |
| 5 | 2, 4 | ifcld 4523 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌) ∈ ℝ) |
| 6 | 5, 2 | ifcld 4523 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) ∈ ℝ) |
| 7 | 6 | fmpttd 7049 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))):𝑋⟶ℝ) |
| 8 | hoidifhspf.d | . . . 4 ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) | |
| 9 | hoidifhspf.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 10 | 8, 3, 9, 1 | hoidifhspval2 46596 | . . 3 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
| 11 | 10 | feq1d 6634 | . 2 ⊢ (𝜑 → (((𝐷‘𝑌)‘𝐴):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))):𝑋⟶ℝ)) |
| 12 | 7, 11 | mpbird 257 | 1 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴):𝑋⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4476 class class class wbr 5092 ↦ cmpt 5173 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 ℝcr 11008 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 |
| This theorem is referenced by: hoidifhspdmvle 46601 hspmbllem1 46607 hspmbllem2 46608 |
| Copyright terms: Public domain | W3C validator |