![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspf | Structured version Visualization version GIF version |
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoidifhspf.d | ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) |
hoidifhspf.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
hoidifhspf.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hoidifhspf.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoidifhspf | ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴):𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidifhspf.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
2 | 1 | ffvelcdmda 7104 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
3 | hoidifhspf.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑌 ∈ ℝ) |
5 | 2, 4 | ifcld 4577 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌) ∈ ℝ) |
6 | 5, 2 | ifcld 4577 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) ∈ ℝ) |
7 | 6 | fmpttd 7135 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))):𝑋⟶ℝ) |
8 | hoidifhspf.d | . . . 4 ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) | |
9 | hoidifhspf.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | 8, 3, 9, 1 | hoidifhspval2 46571 | . . 3 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
11 | 10 | feq1d 6721 | . 2 ⊢ (𝜑 → (((𝐷‘𝑌)‘𝐴):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))):𝑋⟶ℝ)) |
12 | 7, 11 | mpbird 257 | 1 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴):𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℝcr 11152 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 |
This theorem is referenced by: hoidifhspdmvle 46576 hspmbllem1 46582 hspmbllem2 46583 |
Copyright terms: Public domain | W3C validator |