Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspf Structured version   Visualization version   GIF version

Theorem hoidifhspf 46616
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspf.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
hoidifhspf.y (𝜑𝑌 ∈ ℝ)
hoidifhspf.x (𝜑𝑋𝑉)
hoidifhspf.a (𝜑𝐴:𝑋⟶ℝ)
Assertion
Ref Expression
hoidifhspf (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
Distinct variable groups:   𝐴,𝑎,𝑘   𝐾,𝑎,𝑥   𝑋,𝑎,𝑘,𝑥   𝑌,𝑎,𝑘,𝑥   𝜑,𝑎,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑘,𝑎)   𝐾(𝑘)   𝑉(𝑥,𝑘,𝑎)

Proof of Theorem hoidifhspf
StepHypRef Expression
1 hoidifhspf.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
21ffvelcdmda 7056 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
3 hoidifhspf.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
43adantr 480 . . . . 5 ((𝜑𝑘𝑋) → 𝑌 ∈ ℝ)
52, 4ifcld 4535 . . . 4 ((𝜑𝑘𝑋) → if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌) ∈ ℝ)
65, 2ifcld 4535 . . 3 ((𝜑𝑘𝑋) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) ∈ ℝ)
76fmpttd 7087 . 2 (𝜑 → (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))):𝑋⟶ℝ)
8 hoidifhspf.d . . . 4 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
9 hoidifhspf.x . . . 4 (𝜑𝑋𝑉)
108, 3, 9, 1hoidifhspval2 46613 . . 3 (𝜑 → ((𝐷𝑌)‘𝐴) = (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))))
1110feq1d 6670 . 2 (𝜑 → (((𝐷𝑌)‘𝐴):𝑋⟶ℝ ↔ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))):𝑋⟶ℝ))
127, 11mpbird 257 1 (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4488   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801
This theorem is referenced by:  hoidifhspdmvle  46618  hspmbllem1  46624  hspmbllem2  46625
  Copyright terms: Public domain W3C validator