![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspf | Structured version Visualization version GIF version |
Description: π· is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoidifhspf.d | β’ π· = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π = πΎ, if(π₯ β€ (πβπ), (πβπ), π₯), (πβπ))))) |
hoidifhspf.y | β’ (π β π β β) |
hoidifhspf.x | β’ (π β π β π) |
hoidifhspf.a | β’ (π β π΄:πβΆβ) |
Ref | Expression |
---|---|
hoidifhspf | β’ (π β ((π·βπ)βπ΄):πβΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidifhspf.a | . . . . . 6 β’ (π β π΄:πβΆβ) | |
2 | 1 | ffvelcdmda 7085 | . . . . 5 β’ ((π β§ π β π) β (π΄βπ) β β) |
3 | hoidifhspf.y | . . . . . 6 β’ (π β π β β) | |
4 | 3 | adantr 479 | . . . . 5 β’ ((π β§ π β π) β π β β) |
5 | 2, 4 | ifcld 4573 | . . . 4 β’ ((π β§ π β π) β if(π β€ (π΄βπ), (π΄βπ), π) β β) |
6 | 5, 2 | ifcld 4573 | . . 3 β’ ((π β§ π β π) β if(π = πΎ, if(π β€ (π΄βπ), (π΄βπ), π), (π΄βπ)) β β) |
7 | 6 | fmpttd 7115 | . 2 β’ (π β (π β π β¦ if(π = πΎ, if(π β€ (π΄βπ), (π΄βπ), π), (π΄βπ))):πβΆβ) |
8 | hoidifhspf.d | . . . 4 β’ π· = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π = πΎ, if(π₯ β€ (πβπ), (πβπ), π₯), (πβπ))))) | |
9 | hoidifhspf.x | . . . 4 β’ (π β π β π) | |
10 | 8, 3, 9, 1 | hoidifhspval2 45629 | . . 3 β’ (π β ((π·βπ)βπ΄) = (π β π β¦ if(π = πΎ, if(π β€ (π΄βπ), (π΄βπ), π), (π΄βπ)))) |
11 | 10 | feq1d 6701 | . 2 β’ (π β (((π·βπ)βπ΄):πβΆβ β (π β π β¦ if(π = πΎ, if(π β€ (π΄βπ), (π΄βπ), π), (π΄βπ))):πβΆβ)) |
12 | 7, 11 | mpbird 256 | 1 β’ (π β ((π·βπ)βπ΄):πβΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 ifcif 4527 class class class wbr 5147 β¦ cmpt 5230 βΆwf 6538 βcfv 6542 (class class class)co 7411 βm cmap 8822 βcr 11111 β€ cle 11253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 |
This theorem is referenced by: hoidifhspdmvle 45634 hspmbllem1 45640 hspmbllem2 45641 |
Copyright terms: Public domain | W3C validator |