![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspf | Structured version Visualization version GIF version |
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoidifhspf.d | ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) |
hoidifhspf.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
hoidifhspf.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hoidifhspf.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
Ref | Expression |
---|---|
hoidifhspf | ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴):𝑋⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidifhspf.a | . . . . . 6 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
2 | 1 | ffvelcdmda 7118 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
3 | hoidifhspf.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑌 ∈ ℝ) |
5 | 2, 4 | ifcld 4594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌) ∈ ℝ) |
6 | 5, 2 | ifcld 4594 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) ∈ ℝ) |
7 | 6 | fmpttd 7149 | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))):𝑋⟶ℝ) |
8 | hoidifhspf.d | . . . 4 ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) | |
9 | hoidifhspf.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | 8, 3, 9, 1 | hoidifhspval2 46536 | . . 3 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
11 | 10 | feq1d 6732 | . 2 ⊢ (𝜑 → (((𝐷‘𝑌)‘𝐴):𝑋⟶ℝ ↔ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))):𝑋⟶ℝ)) |
12 | 7, 11 | mpbird 257 | 1 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴):𝑋⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℝcr 11183 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 |
This theorem is referenced by: hoidifhspdmvle 46541 hspmbllem1 46547 hspmbllem2 46548 |
Copyright terms: Public domain | W3C validator |