Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspdmvle Structured version   Visualization version   GIF version

Theorem hoidifhspdmvle 46576
Description: The dimensional volume of the difference of a half-open interval and a half-space is less than or equal to the dimensional volume of the whole half-open interval. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspdmvle.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidifhspdmvle.x (𝜑𝑋 ∈ Fin)
hoidifhspdmvle.a (𝜑𝐴:𝑋⟶ℝ)
hoidifhspdmvle.b (𝜑𝐵:𝑋⟶ℝ)
hoidifhspdmvle.k (𝜑𝐾𝑋)
hoidifhspdmvle.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
hoidifhspdmvle.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hoidifhspdmvle (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐴,𝑐,,𝑘   𝐵,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝐾,𝑐,,𝑥   𝑋,𝑎,𝑏,𝑘,𝑥   𝑋,𝑐,   𝑌,𝑎,𝑏,𝑘,𝑥   𝑌,𝑐,   𝜑,𝑎,𝑏,𝑘,𝑥   𝜑,𝑐,
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,,𝑐)   𝐷(𝑥,,𝑐)   𝐾(𝑘,𝑎,𝑏)   𝐿(𝑥,,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem hoidifhspdmvle
StepHypRef Expression
1 nfv 1912 . . 3 𝑘𝜑
2 hoidifhspdmvle.x . . 3 (𝜑𝑋 ∈ Fin)
3 hoidifhspdmvle.d . . . . . 6 𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
4 hoidifhspdmvle.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
5 hoidifhspdmvle.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
63, 4, 2, 5hoidifhspf 46574 . . . . 5 (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
76ffvelcdmda 7104 . . . 4 ((𝜑𝑘𝑋) → (((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ)
8 hoidifhspdmvle.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
98ffvelcdmda 7104 . . . 4 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
10 volicore 46537 . . . 4 (((((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
117, 9, 10syl2anc 584 . . 3 ((𝜑𝑘𝑋) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
129rexrd 11309 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
13 icombl 25613 . . . . 5 (((((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol)
147, 12, 13syl2anc 584 . . . 4 ((𝜑𝑘𝑋) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol)
15 volge0 45917 . . . 4 (((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol → 0 ≤ (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
1614, 15syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
175ffvelcdmda 7104 . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
18 volicore 46537 . . . 4 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
1917, 9, 18syl2anc 584 . . 3 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
20 icombl 25613 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2117, 12, 20syl2anc 584 . . . 4 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2217rexrd 11309 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
234adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝑌 ∈ ℝ)
2423adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ∈ ℝ)
2517adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ∈ ℝ)
26 max2 13226 . . . . . . . 8 ((𝑌 ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ) → (𝐴𝑘) ≤ if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
2724, 25, 26syl2anc 584 . . . . . . 7 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ≤ if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
282adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑋 ∈ Fin)
295adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴:𝑋⟶ℝ)
30 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑘𝑋)
313, 23, 28, 29, 30hoidifhspval3 46575 . . . . . . . . 9 ((𝜑𝑘𝑋) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
3231adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
33 iftrue 4537 . . . . . . . . 9 (𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
3433adantl 481 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
3532, 34eqtr2d 2776 . . . . . . 7 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌) = (((𝐷𝑌)‘𝐴)‘𝑘))
3627, 35breqtrd 5174 . . . . . 6 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
3717leidd 11827 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
3837adantr 480 . . . . . . 7 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (𝐴𝑘))
3931adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
40 iffalse 4540 . . . . . . . . 9 𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
4140adantl 481 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
4239, 41eqtr2d 2776 . . . . . . 7 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) = (((𝐷𝑌)‘𝐴)‘𝑘))
4338, 42breqtrd 5174 . . . . . 6 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
4436, 43pm2.61dan 813 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
459leidd 11827 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ≤ (𝐵𝑘))
46 icossico 13454 . . . . 5 ((((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
4722, 12, 44, 45, 46syl22anc 839 . . . 4 ((𝜑𝑘𝑋) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
48 volss 25582 . . . 4 ((((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol ∧ ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol ∧ ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘))) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
4914, 21, 47, 48syl3anc 1370 . . 3 ((𝜑𝑘𝑋) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
501, 2, 11, 16, 19, 49fprodle 16029 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
51 hoidifhspdmvle.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
52 hoidifhspdmvle.k . . . . 5 (𝜑𝐾𝑋)
5352ne0d 4348 . . . 4 (𝜑𝑋 ≠ ∅)
5451, 2, 53, 6, 8hoidmvn0val 46540 . . 3 (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
5551, 2, 53, 5, 8hoidmvn0val 46540 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
5654, 55breq12d 5161 . 2 (𝜑 → ((((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵) ↔ ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
5750, 56mpbird 257 1 (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963  c0 4339  ifcif 4531   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  Fincfn 8984  cr 11152  0cc0 11153  *cxr 11292  cle 11294  [,)cico 13386  cprod 15936  volcvol 25512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-prod 15937  df-rest 17469  df-topgen 17490  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-top 22916  df-topon 22933  df-bases 22969  df-cmp 23411  df-ovol 25513  df-vol 25514
This theorem is referenced by:  hspmbllem2  46583
  Copyright terms: Public domain W3C validator