Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspdmvle Structured version   Visualization version   GIF version

Theorem hoidifhspdmvle 44048
Description: The dimensional volume of the difference of a half-open interval and a half-space is less than or equal to the dimensional volume of the whole half-open interval. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspdmvle.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
hoidifhspdmvle.x (𝜑𝑋 ∈ Fin)
hoidifhspdmvle.a (𝜑𝐴:𝑋⟶ℝ)
hoidifhspdmvle.b (𝜑𝐵:𝑋⟶ℝ)
hoidifhspdmvle.k (𝜑𝐾𝑋)
hoidifhspdmvle.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
hoidifhspdmvle.y (𝜑𝑌 ∈ ℝ)
Assertion
Ref Expression
hoidifhspdmvle (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑘   𝐴,𝑐,,𝑘   𝐵,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝐾,𝑐,,𝑥   𝑋,𝑎,𝑏,𝑘,𝑥   𝑋,𝑐,   𝑌,𝑎,𝑏,𝑘,𝑥   𝑌,𝑐,   𝜑,𝑎,𝑏,𝑘,𝑥   𝜑,𝑐,
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,,𝑐)   𝐷(𝑥,,𝑐)   𝐾(𝑘,𝑎,𝑏)   𝐿(𝑥,,𝑘,𝑎,𝑏,𝑐)

Proof of Theorem hoidifhspdmvle
StepHypRef Expression
1 nfv 1918 . . 3 𝑘𝜑
2 hoidifhspdmvle.x . . 3 (𝜑𝑋 ∈ Fin)
3 hoidifhspdmvle.d . . . . . 6 𝐷 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (𝑋 ↦ if( = 𝐾, if(𝑥 ≤ (𝑐), (𝑐), 𝑥), (𝑐)))))
4 hoidifhspdmvle.y . . . . . 6 (𝜑𝑌 ∈ ℝ)
5 hoidifhspdmvle.a . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
63, 4, 2, 5hoidifhspf 44046 . . . . 5 (𝜑 → ((𝐷𝑌)‘𝐴):𝑋⟶ℝ)
76ffvelrnda 6943 . . . 4 ((𝜑𝑘𝑋) → (((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ)
8 hoidifhspdmvle.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
98ffvelrnda 6943 . . . 4 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ)
10 volicore 44009 . . . 4 (((((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
117, 9, 10syl2anc 583 . . 3 ((𝜑𝑘𝑋) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ∈ ℝ)
129rexrd 10956 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ∈ ℝ*)
13 icombl 24633 . . . . 5 (((((𝐷𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol)
147, 12, 13syl2anc 583 . . . 4 ((𝜑𝑘𝑋) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol)
15 volge0 43392 . . . 4 (((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol → 0 ≤ (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
1614, 15syl 17 . . 3 ((𝜑𝑘𝑋) → 0 ≤ (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
175ffvelrnda 6943 . . . 4 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
18 volicore 44009 . . . 4 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
1917, 9, 18syl2anc 583 . . 3 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,)(𝐵𝑘))) ∈ ℝ)
20 icombl 24633 . . . . 5 (((𝐴𝑘) ∈ ℝ ∧ (𝐵𝑘) ∈ ℝ*) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2117, 12, 20syl2anc 583 . . . 4 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol)
2217rexrd 10956 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
234adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑋) → 𝑌 ∈ ℝ)
2423adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → 𝑌 ∈ ℝ)
2517adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ∈ ℝ)
26 max2 12850 . . . . . . . 8 ((𝑌 ∈ ℝ ∧ (𝐴𝑘) ∈ ℝ) → (𝐴𝑘) ≤ if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
2724, 25, 26syl2anc 583 . . . . . . 7 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ≤ if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
282adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑋 ∈ Fin)
295adantr 480 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝐴:𝑋⟶ℝ)
30 simpr 484 . . . . . . . . . 10 ((𝜑𝑘𝑋) → 𝑘𝑋)
313, 23, 28, 29, 30hoidifhspval3 44047 . . . . . . . . 9 ((𝜑𝑘𝑋) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
3231adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
33 iftrue 4462 . . . . . . . . 9 (𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
3433adantl 481 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌))
3532, 34eqtr2d 2779 . . . . . . 7 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌) = (((𝐷𝑌)‘𝐴)‘𝑘))
3627, 35breqtrd 5096 . . . . . 6 (((𝜑𝑘𝑋) ∧ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
3717leidd 11471 . . . . . . . 8 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (𝐴𝑘))
3837adantr 480 . . . . . . 7 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (𝐴𝑘))
3931adantr 480 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (((𝐷𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)))
40 iffalse 4465 . . . . . . . . 9 𝑘 = 𝐾 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
4140adantl 481 . . . . . . . 8 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = (𝐴𝑘))
4239, 41eqtr2d 2779 . . . . . . 7 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) = (((𝐷𝑌)‘𝐴)‘𝑘))
4338, 42breqtrd 5096 . . . . . 6 (((𝜑𝑘𝑋) ∧ ¬ 𝑘 = 𝐾) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
4436, 43pm2.61dan 809 . . . . 5 ((𝜑𝑘𝑋) → (𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘))
459leidd 11471 . . . . 5 ((𝜑𝑘𝑋) → (𝐵𝑘) ≤ (𝐵𝑘))
46 icossico 13078 . . . . 5 ((((𝐴𝑘) ∈ ℝ* ∧ (𝐵𝑘) ∈ ℝ*) ∧ ((𝐴𝑘) ≤ (((𝐷𝑌)‘𝐴)‘𝑘) ∧ (𝐵𝑘) ≤ (𝐵𝑘))) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
4722, 12, 44, 45, 46syl22anc 835 . . . 4 ((𝜑𝑘𝑋) → ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘)))
48 volss 24602 . . . 4 ((((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ∈ dom vol ∧ ((𝐴𝑘)[,)(𝐵𝑘)) ∈ dom vol ∧ ((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘)) ⊆ ((𝐴𝑘)[,)(𝐵𝑘))) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
4914, 21, 47, 48syl3anc 1369 . . 3 ((𝜑𝑘𝑋) → (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
501, 2, 11, 16, 19, 49fprodle 15634 . 2 (𝜑 → ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
51 hoidifhspdmvle.l . . . 4 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
52 hoidifhspdmvle.k . . . . 5 (𝜑𝐾𝑋)
5352ne0d 4266 . . . 4 (𝜑𝑋 ≠ ∅)
5451, 2, 53, 6, 8hoidmvn0val 44012 . . 3 (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))))
5551, 2, 53, 5, 8hoidmvn0val 44012 . . 3 (𝜑 → (𝐴(𝐿𝑋)𝐵) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘))))
5654, 55breq12d 5083 . 2 (𝜑 → ((((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵) ↔ ∏𝑘𝑋 (vol‘((((𝐷𝑌)‘𝐴)‘𝑘)[,)(𝐵𝑘))) ≤ ∏𝑘𝑋 (vol‘((𝐴𝑘)[,)(𝐵𝑘)))))
5750, 56mpbird 256 1 (𝜑 → (((𝐷𝑌)‘𝐴)(𝐿𝑋)𝐵) ≤ (𝐴(𝐿𝑋)𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  c0 4253  ifcif 4456   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  Fincfn 8691  cr 10801  0cc0 10802  *cxr 10939  cle 10941  [,)cico 13010  cprod 15543  volcvol 24532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-prod 15544  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534
This theorem is referenced by:  hspmbllem2  44055
  Copyright terms: Public domain W3C validator