Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspval3 | Structured version Visualization version GIF version |
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoidifhspval3.d | ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) |
hoidifhspval3.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
hoidifhspval3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hoidifhspval3.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoidifhspval3.j | ⊢ (𝜑 → 𝐽 ∈ 𝑋) |
Ref | Expression |
---|---|
hoidifhspval3 | ⊢ (𝜑 → (((𝐷‘𝑌)‘𝐴)‘𝐽) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidifhspval3.d | . . 3 ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) | |
2 | hoidifhspval3.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
3 | hoidifhspval3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | hoidifhspval3.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
5 | 1, 2, 3, 4 | hoidifhspval2 43695 | . 2 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
6 | eqeq1 2742 | . . . 4 ⊢ (𝑘 = 𝐽 → (𝑘 = 𝐾 ↔ 𝐽 = 𝐾)) | |
7 | fveq2 6674 | . . . . . 6 ⊢ (𝑘 = 𝐽 → (𝐴‘𝑘) = (𝐴‘𝐽)) | |
8 | 7 | breq2d 5042 | . . . . 5 ⊢ (𝑘 = 𝐽 → (𝑌 ≤ (𝐴‘𝑘) ↔ 𝑌 ≤ (𝐴‘𝐽))) |
9 | 8, 7 | ifbieq1d 4438 | . . . 4 ⊢ (𝑘 = 𝐽 → if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌) = if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌)) |
10 | 6, 9, 7 | ifbieq12d 4442 | . . 3 ⊢ (𝑘 = 𝐽 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
11 | 10 | adantl 485 | . 2 ⊢ ((𝜑 ∧ 𝑘 = 𝐽) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
12 | hoidifhspval3.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑋) | |
13 | fvexd 6689 | . . . 4 ⊢ (𝜑 → (𝐴‘𝐽) ∈ V) | |
14 | 2 | elexd 3418 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) |
15 | 13, 14 | ifcld 4460 | . . 3 ⊢ (𝜑 → if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌) ∈ V) |
16 | 15, 13 | ifcld 4460 | . 2 ⊢ (𝜑 → if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽)) ∈ V) |
17 | 5, 11, 12, 16 | fvmptd 6782 | 1 ⊢ (𝜑 → (((𝐷‘𝑌)‘𝐴)‘𝐽) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ifcif 4414 class class class wbr 5030 ↦ cmpt 5110 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 ↑m cmap 8437 ℝcr 10614 ≤ cle 10754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-oprab 7174 df-mpo 7175 df-map 8439 |
This theorem is referenced by: hoidifhspdmvle 43700 hspmbllem1 43706 hspmbllem2 43707 |
Copyright terms: Public domain | W3C validator |