Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspval3 Structured version   Visualization version   GIF version

Theorem hoidifhspval3 45820
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspval3.d 𝐷 = (π‘₯ ∈ ℝ ↦ (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘₯ ≀ (π‘Žβ€˜π‘˜), (π‘Žβ€˜π‘˜), π‘₯), (π‘Žβ€˜π‘˜)))))
hoidifhspval3.y (πœ‘ β†’ π‘Œ ∈ ℝ)
hoidifhspval3.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
hoidifhspval3.a (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)
hoidifhspval3.j (πœ‘ β†’ 𝐽 ∈ 𝑋)
Assertion
Ref Expression
hoidifhspval3 (πœ‘ β†’ (((π·β€˜π‘Œ)β€˜π΄)β€˜π½) = if(𝐽 = 𝐾, if(π‘Œ ≀ (π΄β€˜π½), (π΄β€˜π½), π‘Œ), (π΄β€˜π½)))
Distinct variable groups:   𝐴,π‘Ž,π‘˜   π‘˜,𝐽   𝐾,π‘Ž,π‘˜,π‘₯   𝑋,π‘Ž,π‘˜,π‘₯   π‘Œ,π‘Ž,π‘˜,π‘₯   πœ‘,π‘Ž,π‘˜,π‘₯
Allowed substitution hints:   𝐴(π‘₯)   𝐷(π‘₯,π‘˜,π‘Ž)   𝐽(π‘₯,π‘Ž)   𝑉(π‘₯,π‘˜,π‘Ž)

Proof of Theorem hoidifhspval3
StepHypRef Expression
1 hoidifhspval3.d . . 3 𝐷 = (π‘₯ ∈ ℝ ↦ (π‘Ž ∈ (ℝ ↑m 𝑋) ↦ (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘₯ ≀ (π‘Žβ€˜π‘˜), (π‘Žβ€˜π‘˜), π‘₯), (π‘Žβ€˜π‘˜)))))
2 hoidifhspval3.y . . 3 (πœ‘ β†’ π‘Œ ∈ ℝ)
3 hoidifhspval3.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑉)
4 hoidifhspval3.a . . 3 (πœ‘ β†’ 𝐴:π‘‹βŸΆβ„)
51, 2, 3, 4hoidifhspval2 45816 . 2 (πœ‘ β†’ ((π·β€˜π‘Œ)β€˜π΄) = (π‘˜ ∈ 𝑋 ↦ if(π‘˜ = 𝐾, if(π‘Œ ≀ (π΄β€˜π‘˜), (π΄β€˜π‘˜), π‘Œ), (π΄β€˜π‘˜))))
6 eqeq1 2728 . . . 4 (π‘˜ = 𝐽 β†’ (π‘˜ = 𝐾 ↔ 𝐽 = 𝐾))
7 fveq2 6881 . . . . . 6 (π‘˜ = 𝐽 β†’ (π΄β€˜π‘˜) = (π΄β€˜π½))
87breq2d 5150 . . . . 5 (π‘˜ = 𝐽 β†’ (π‘Œ ≀ (π΄β€˜π‘˜) ↔ π‘Œ ≀ (π΄β€˜π½)))
98, 7ifbieq1d 4544 . . . 4 (π‘˜ = 𝐽 β†’ if(π‘Œ ≀ (π΄β€˜π‘˜), (π΄β€˜π‘˜), π‘Œ) = if(π‘Œ ≀ (π΄β€˜π½), (π΄β€˜π½), π‘Œ))
106, 9, 7ifbieq12d 4548 . . 3 (π‘˜ = 𝐽 β†’ if(π‘˜ = 𝐾, if(π‘Œ ≀ (π΄β€˜π‘˜), (π΄β€˜π‘˜), π‘Œ), (π΄β€˜π‘˜)) = if(𝐽 = 𝐾, if(π‘Œ ≀ (π΄β€˜π½), (π΄β€˜π½), π‘Œ), (π΄β€˜π½)))
1110adantl 481 . 2 ((πœ‘ ∧ π‘˜ = 𝐽) β†’ if(π‘˜ = 𝐾, if(π‘Œ ≀ (π΄β€˜π‘˜), (π΄β€˜π‘˜), π‘Œ), (π΄β€˜π‘˜)) = if(𝐽 = 𝐾, if(π‘Œ ≀ (π΄β€˜π½), (π΄β€˜π½), π‘Œ), (π΄β€˜π½)))
12 hoidifhspval3.j . 2 (πœ‘ β†’ 𝐽 ∈ 𝑋)
13 fvexd 6896 . . . 4 (πœ‘ β†’ (π΄β€˜π½) ∈ V)
142elexd 3487 . . . 4 (πœ‘ β†’ π‘Œ ∈ V)
1513, 14ifcld 4566 . . 3 (πœ‘ β†’ if(π‘Œ ≀ (π΄β€˜π½), (π΄β€˜π½), π‘Œ) ∈ V)
1615, 13ifcld 4566 . 2 (πœ‘ β†’ if(𝐽 = 𝐾, if(π‘Œ ≀ (π΄β€˜π½), (π΄β€˜π½), π‘Œ), (π΄β€˜π½)) ∈ V)
175, 11, 12, 16fvmptd 6995 1 (πœ‘ β†’ (((π·β€˜π‘Œ)β€˜π΄)β€˜π½) = if(𝐽 = 𝐾, if(π‘Œ ≀ (π΄β€˜π½), (π΄β€˜π½), π‘Œ), (π΄β€˜π½)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3466  ifcif 4520   class class class wbr 5138   ↦ cmpt 5221  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   ↑m cmap 8816  β„cr 11105   ≀ cle 11246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-map 8818
This theorem is referenced by:  hoidifhspdmvle  45821  hspmbllem1  45827  hspmbllem2  45828
  Copyright terms: Public domain W3C validator