Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoidifhspval3 Structured version   Visualization version   GIF version

Theorem hoidifhspval3 46624
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoidifhspval3.d 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
hoidifhspval3.y (𝜑𝑌 ∈ ℝ)
hoidifhspval3.x (𝜑𝑋𝑉)
hoidifhspval3.a (𝜑𝐴:𝑋⟶ℝ)
hoidifhspval3.j (𝜑𝐽𝑋)
Assertion
Ref Expression
hoidifhspval3 (𝜑 → (((𝐷𝑌)‘𝐴)‘𝐽) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴𝐽), (𝐴𝐽), 𝑌), (𝐴𝐽)))
Distinct variable groups:   𝐴,𝑎,𝑘   𝑘,𝐽   𝐾,𝑎,𝑘,𝑥   𝑋,𝑎,𝑘,𝑥   𝑌,𝑎,𝑘,𝑥   𝜑,𝑎,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐷(𝑥,𝑘,𝑎)   𝐽(𝑥,𝑎)   𝑉(𝑥,𝑘,𝑎)

Proof of Theorem hoidifhspval3
StepHypRef Expression
1 hoidifhspval3.d . . 3 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎𝑘), (𝑎𝑘), 𝑥), (𝑎𝑘)))))
2 hoidifhspval3.y . . 3 (𝜑𝑌 ∈ ℝ)
3 hoidifhspval3.x . . 3 (𝜑𝑋𝑉)
4 hoidifhspval3.a . . 3 (𝜑𝐴:𝑋⟶ℝ)
51, 2, 3, 4hoidifhspval2 46620 . 2 (𝜑 → ((𝐷𝑌)‘𝐴) = (𝑘𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘))))
6 eqeq1 2734 . . . 4 (𝑘 = 𝐽 → (𝑘 = 𝐾𝐽 = 𝐾))
7 fveq2 6861 . . . . . 6 (𝑘 = 𝐽 → (𝐴𝑘) = (𝐴𝐽))
87breq2d 5122 . . . . 5 (𝑘 = 𝐽 → (𝑌 ≤ (𝐴𝑘) ↔ 𝑌 ≤ (𝐴𝐽)))
98, 7ifbieq1d 4516 . . . 4 (𝑘 = 𝐽 → if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌) = if(𝑌 ≤ (𝐴𝐽), (𝐴𝐽), 𝑌))
106, 9, 7ifbieq12d 4520 . . 3 (𝑘 = 𝐽 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴𝐽), (𝐴𝐽), 𝑌), (𝐴𝐽)))
1110adantl 481 . 2 ((𝜑𝑘 = 𝐽) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴𝑘), (𝐴𝑘), 𝑌), (𝐴𝑘)) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴𝐽), (𝐴𝐽), 𝑌), (𝐴𝐽)))
12 hoidifhspval3.j . 2 (𝜑𝐽𝑋)
13 fvexd 6876 . . . 4 (𝜑 → (𝐴𝐽) ∈ V)
142elexd 3474 . . . 4 (𝜑𝑌 ∈ V)
1513, 14ifcld 4538 . . 3 (𝜑 → if(𝑌 ≤ (𝐴𝐽), (𝐴𝐽), 𝑌) ∈ V)
1615, 13ifcld 4538 . 2 (𝜑 → if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴𝐽), (𝐴𝐽), 𝑌), (𝐴𝐽)) ∈ V)
175, 11, 12, 16fvmptd 6978 1 (𝜑 → (((𝐷𝑌)‘𝐴)‘𝐽) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴𝐽), (𝐴𝐽), 𝑌), (𝐴𝐽)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  ifcif 4491   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  cr 11074  cle 11216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804
This theorem is referenced by:  hoidifhspdmvle  46625  hspmbllem1  46631  hspmbllem2  46632
  Copyright terms: Public domain W3C validator