Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspval3 | Structured version Visualization version GIF version |
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoidifhspval3.d | ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) |
hoidifhspval3.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
hoidifhspval3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hoidifhspval3.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoidifhspval3.j | ⊢ (𝜑 → 𝐽 ∈ 𝑋) |
Ref | Expression |
---|---|
hoidifhspval3 | ⊢ (𝜑 → (((𝐷‘𝑌)‘𝐴)‘𝐽) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidifhspval3.d | . . 3 ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) | |
2 | hoidifhspval3.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
3 | hoidifhspval3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | hoidifhspval3.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
5 | 1, 2, 3, 4 | hoidifhspval2 44043 | . 2 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
6 | eqeq1 2742 | . . . 4 ⊢ (𝑘 = 𝐽 → (𝑘 = 𝐾 ↔ 𝐽 = 𝐾)) | |
7 | fveq2 6756 | . . . . . 6 ⊢ (𝑘 = 𝐽 → (𝐴‘𝑘) = (𝐴‘𝐽)) | |
8 | 7 | breq2d 5082 | . . . . 5 ⊢ (𝑘 = 𝐽 → (𝑌 ≤ (𝐴‘𝑘) ↔ 𝑌 ≤ (𝐴‘𝐽))) |
9 | 8, 7 | ifbieq1d 4480 | . . . 4 ⊢ (𝑘 = 𝐽 → if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌) = if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌)) |
10 | 6, 9, 7 | ifbieq12d 4484 | . . 3 ⊢ (𝑘 = 𝐽 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
11 | 10 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑘 = 𝐽) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
12 | hoidifhspval3.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑋) | |
13 | fvexd 6771 | . . . 4 ⊢ (𝜑 → (𝐴‘𝐽) ∈ V) | |
14 | 2 | elexd 3442 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) |
15 | 13, 14 | ifcld 4502 | . . 3 ⊢ (𝜑 → if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌) ∈ V) |
16 | 15, 13 | ifcld 4502 | . 2 ⊢ (𝜑 → if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽)) ∈ V) |
17 | 5, 11, 12, 16 | fvmptd 6864 | 1 ⊢ (𝜑 → (((𝐷‘𝑌)‘𝐴)‘𝐽) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℝcr 10801 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 |
This theorem is referenced by: hoidifhspdmvle 44048 hspmbllem1 44054 hspmbllem2 44055 |
Copyright terms: Public domain | W3C validator |