![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspval3 | Structured version Visualization version GIF version |
Description: 𝐷 is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoidifhspval3.d | ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) |
hoidifhspval3.y | ⊢ (𝜑 → 𝑌 ∈ ℝ) |
hoidifhspval3.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
hoidifhspval3.a | ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
hoidifhspval3.j | ⊢ (𝜑 → 𝐽 ∈ 𝑋) |
Ref | Expression |
---|---|
hoidifhspval3 | ⊢ (𝜑 → (((𝐷‘𝑌)‘𝐴)‘𝐽) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidifhspval3.d | . . 3 ⊢ 𝐷 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑m 𝑋) ↦ (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑥 ≤ (𝑎‘𝑘), (𝑎‘𝑘), 𝑥), (𝑎‘𝑘))))) | |
2 | hoidifhspval3.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ ℝ) | |
3 | hoidifhspval3.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | hoidifhspval3.a | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) | |
5 | 1, 2, 3, 4 | hoidifhspval2 46571 | . 2 ⊢ (𝜑 → ((𝐷‘𝑌)‘𝐴) = (𝑘 ∈ 𝑋 ↦ if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)))) |
6 | eqeq1 2739 | . . . 4 ⊢ (𝑘 = 𝐽 → (𝑘 = 𝐾 ↔ 𝐽 = 𝐾)) | |
7 | fveq2 6907 | . . . . . 6 ⊢ (𝑘 = 𝐽 → (𝐴‘𝑘) = (𝐴‘𝐽)) | |
8 | 7 | breq2d 5160 | . . . . 5 ⊢ (𝑘 = 𝐽 → (𝑌 ≤ (𝐴‘𝑘) ↔ 𝑌 ≤ (𝐴‘𝐽))) |
9 | 8, 7 | ifbieq1d 4555 | . . . 4 ⊢ (𝑘 = 𝐽 → if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌) = if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌)) |
10 | 6, 9, 7 | ifbieq12d 4559 | . . 3 ⊢ (𝑘 = 𝐽 → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
11 | 10 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑘 = 𝐽) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
12 | hoidifhspval3.j | . 2 ⊢ (𝜑 → 𝐽 ∈ 𝑋) | |
13 | fvexd 6922 | . . . 4 ⊢ (𝜑 → (𝐴‘𝐽) ∈ V) | |
14 | 2 | elexd 3502 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ V) |
15 | 13, 14 | ifcld 4577 | . . 3 ⊢ (𝜑 → if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌) ∈ V) |
16 | 15, 13 | ifcld 4577 | . 2 ⊢ (𝜑 → if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽)) ∈ V) |
17 | 5, 11, 12, 16 | fvmptd 7023 | 1 ⊢ (𝜑 → (((𝐷‘𝑌)‘𝐴)‘𝐽) = if(𝐽 = 𝐾, if(𝑌 ≤ (𝐴‘𝐽), (𝐴‘𝐽), 𝑌), (𝐴‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ifcif 4531 class class class wbr 5148 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℝcr 11152 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 |
This theorem is referenced by: hoidifhspdmvle 46576 hspmbllem1 46582 hspmbllem2 46583 |
Copyright terms: Public domain | W3C validator |