![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hoidifhspval3 | Structured version Visualization version GIF version |
Description: π· is a function that returns the representation of the left side of the difference of a half-open interval and a half-space. Used in Lemma 115F of [Fremlin1] p. 31 . (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
hoidifhspval3.d | β’ π· = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π = πΎ, if(π₯ β€ (πβπ), (πβπ), π₯), (πβπ))))) |
hoidifhspval3.y | β’ (π β π β β) |
hoidifhspval3.x | β’ (π β π β π) |
hoidifhspval3.a | β’ (π β π΄:πβΆβ) |
hoidifhspval3.j | β’ (π β π½ β π) |
Ref | Expression |
---|---|
hoidifhspval3 | β’ (π β (((π·βπ)βπ΄)βπ½) = if(π½ = πΎ, if(π β€ (π΄βπ½), (π΄βπ½), π), (π΄βπ½))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoidifhspval3.d | . . 3 β’ π· = (π₯ β β β¦ (π β (β βm π) β¦ (π β π β¦ if(π = πΎ, if(π₯ β€ (πβπ), (πβπ), π₯), (πβπ))))) | |
2 | hoidifhspval3.y | . . 3 β’ (π β π β β) | |
3 | hoidifhspval3.x | . . 3 β’ (π β π β π) | |
4 | hoidifhspval3.a | . . 3 β’ (π β π΄:πβΆβ) | |
5 | 1, 2, 3, 4 | hoidifhspval2 45816 | . 2 β’ (π β ((π·βπ)βπ΄) = (π β π β¦ if(π = πΎ, if(π β€ (π΄βπ), (π΄βπ), π), (π΄βπ)))) |
6 | eqeq1 2728 | . . . 4 β’ (π = π½ β (π = πΎ β π½ = πΎ)) | |
7 | fveq2 6881 | . . . . . 6 β’ (π = π½ β (π΄βπ) = (π΄βπ½)) | |
8 | 7 | breq2d 5150 | . . . . 5 β’ (π = π½ β (π β€ (π΄βπ) β π β€ (π΄βπ½))) |
9 | 8, 7 | ifbieq1d 4544 | . . . 4 β’ (π = π½ β if(π β€ (π΄βπ), (π΄βπ), π) = if(π β€ (π΄βπ½), (π΄βπ½), π)) |
10 | 6, 9, 7 | ifbieq12d 4548 | . . 3 β’ (π = π½ β if(π = πΎ, if(π β€ (π΄βπ), (π΄βπ), π), (π΄βπ)) = if(π½ = πΎ, if(π β€ (π΄βπ½), (π΄βπ½), π), (π΄βπ½))) |
11 | 10 | adantl 481 | . 2 β’ ((π β§ π = π½) β if(π = πΎ, if(π β€ (π΄βπ), (π΄βπ), π), (π΄βπ)) = if(π½ = πΎ, if(π β€ (π΄βπ½), (π΄βπ½), π), (π΄βπ½))) |
12 | hoidifhspval3.j | . 2 β’ (π β π½ β π) | |
13 | fvexd 6896 | . . . 4 β’ (π β (π΄βπ½) β V) | |
14 | 2 | elexd 3487 | . . . 4 β’ (π β π β V) |
15 | 13, 14 | ifcld 4566 | . . 3 β’ (π β if(π β€ (π΄βπ½), (π΄βπ½), π) β V) |
16 | 15, 13 | ifcld 4566 | . 2 β’ (π β if(π½ = πΎ, if(π β€ (π΄βπ½), (π΄βπ½), π), (π΄βπ½)) β V) |
17 | 5, 11, 12, 16 | fvmptd 6995 | 1 β’ (π β (((π·βπ)βπ΄)βπ½) = if(π½ = πΎ, if(π β€ (π΄βπ½), (π΄βπ½), π), (π΄βπ½))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3466 ifcif 4520 class class class wbr 5138 β¦ cmpt 5221 βΆwf 6529 βcfv 6533 (class class class)co 7401 βm cmap 8816 βcr 11105 β€ cle 11246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-map 8818 |
This theorem is referenced by: hoidifhspdmvle 45821 hspmbllem1 45827 hspmbllem2 45828 |
Copyright terms: Public domain | W3C validator |