| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homadm | Structured version Visualization version GIF version | ||
| Description: The domain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homadm | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-doma 17949 | . . . 4 ⊢ doma = (1st ∘ 1st ) | |
| 2 | 1 | fveq1i 6827 | . . 3 ⊢ (doma‘𝐹) = ((1st ∘ 1st )‘𝐹) |
| 3 | fo1st 7951 | . . . . 5 ⊢ 1st :V–onto→V | |
| 4 | fof 6740 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
| 6 | elex 3459 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V) | |
| 7 | fvco3 6926 | . . . 4 ⊢ ((1st :V⟶V ∧ 𝐹 ∈ V) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st ‘𝐹))) | |
| 8 | 5, 6, 7 | sylancr 587 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st ‘𝐹))) |
| 9 | 2, 8 | eqtrid 2776 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = (1st ‘(1st ‘𝐹))) |
| 10 | homahom.h | . . . . . 6 ⊢ 𝐻 = (Homa‘𝐶) | |
| 11 | 10 | homarel 17961 | . . . . 5 ⊢ Rel (𝑋𝐻𝑌) |
| 12 | 1st2ndbr 7984 | . . . . 5 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
| 13 | 11, 12 | mpan 690 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
| 14 | 10 | homa1 17962 | . . . 4 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
| 16 | 15 | fveq2d 6830 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘(1st ‘𝐹)) = (1st ‘〈𝑋, 𝑌〉)) |
| 17 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 18 | 10, 17 | homarcl2 17960 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 19 | op1stg 7943 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 20 | 18, 19 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 21 | 9, 16, 20 | 3eqtrd 2768 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 〈cop 4585 class class class wbr 5095 ∘ ccom 5627 Rel wrel 5628 ⟶wf 6482 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 2nd c2nd 7930 Basecbs 17138 domacdoma 17945 Homachoma 17948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-1st 7931 df-2nd 7932 df-doma 17949 df-homa 17951 |
| This theorem is referenced by: arwhoma 17970 idadm 17986 homdmcoa 17992 coaval 17993 |
| Copyright terms: Public domain | W3C validator |