| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homadm | Structured version Visualization version GIF version | ||
| Description: The domain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homadm | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-doma 17939 | . . . 4 ⊢ doma = (1st ∘ 1st ) | |
| 2 | 1 | fveq1i 6832 | . . 3 ⊢ (doma‘𝐹) = ((1st ∘ 1st )‘𝐹) |
| 3 | fo1st 7950 | . . . . 5 ⊢ 1st :V–onto→V | |
| 4 | fof 6743 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
| 6 | elex 3458 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V) | |
| 7 | fvco3 6930 | . . . 4 ⊢ ((1st :V⟶V ∧ 𝐹 ∈ V) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st ‘𝐹))) | |
| 8 | 5, 6, 7 | sylancr 587 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st ‘𝐹))) |
| 9 | 2, 8 | eqtrid 2780 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = (1st ‘(1st ‘𝐹))) |
| 10 | homahom.h | . . . . . 6 ⊢ 𝐻 = (Homa‘𝐶) | |
| 11 | 10 | homarel 17951 | . . . . 5 ⊢ Rel (𝑋𝐻𝑌) |
| 12 | 1st2ndbr 7983 | . . . . 5 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
| 13 | 11, 12 | mpan 690 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
| 14 | 10 | homa1 17952 | . . . 4 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
| 16 | 15 | fveq2d 6835 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘(1st ‘𝐹)) = (1st ‘〈𝑋, 𝑌〉)) |
| 17 | eqid 2733 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 18 | 10, 17 | homarcl2 17950 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 19 | op1stg 7942 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 20 | 18, 19 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 21 | 9, 16, 20 | 3eqtrd 2772 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 〈cop 4583 class class class wbr 5095 ∘ ccom 5625 Rel wrel 5626 ⟶wf 6485 –onto→wfo 6487 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 Basecbs 17127 domacdoma 17935 Homachoma 17938 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-1st 7930 df-2nd 7931 df-doma 17939 df-homa 17941 |
| This theorem is referenced by: arwhoma 17960 idadm 17976 homdmcoa 17982 coaval 17983 |
| Copyright terms: Public domain | W3C validator |