| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > homadm | Structured version Visualization version GIF version | ||
| Description: The domain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
| Ref | Expression |
|---|---|
| homadm | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-doma 17993 | . . . 4 ⊢ doma = (1st ∘ 1st ) | |
| 2 | 1 | fveq1i 6862 | . . 3 ⊢ (doma‘𝐹) = ((1st ∘ 1st )‘𝐹) |
| 3 | fo1st 7991 | . . . . 5 ⊢ 1st :V–onto→V | |
| 4 | fof 6775 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
| 6 | elex 3471 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V) | |
| 7 | fvco3 6963 | . . . 4 ⊢ ((1st :V⟶V ∧ 𝐹 ∈ V) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st ‘𝐹))) | |
| 8 | 5, 6, 7 | sylancr 587 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st ‘𝐹))) |
| 9 | 2, 8 | eqtrid 2777 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = (1st ‘(1st ‘𝐹))) |
| 10 | homahom.h | . . . . . 6 ⊢ 𝐻 = (Homa‘𝐶) | |
| 11 | 10 | homarel 18005 | . . . . 5 ⊢ Rel (𝑋𝐻𝑌) |
| 12 | 1st2ndbr 8024 | . . . . 5 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
| 13 | 11, 12 | mpan 690 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
| 14 | 10 | homa1 18006 | . . . 4 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = 〈𝑋, 𝑌〉) |
| 16 | 15 | fveq2d 6865 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘(1st ‘𝐹)) = (1st ‘〈𝑋, 𝑌〉)) |
| 17 | eqid 2730 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 18 | 10, 17 | homarcl2 18004 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
| 19 | op1stg 7983 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) | |
| 20 | 18, 19 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘〈𝑋, 𝑌〉) = 𝑋) |
| 21 | 9, 16, 20 | 3eqtrd 2769 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 〈cop 4598 class class class wbr 5110 ∘ ccom 5645 Rel wrel 5646 ⟶wf 6510 –onto→wfo 6512 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 2nd c2nd 7970 Basecbs 17186 domacdoma 17989 Homachoma 17992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-1st 7971 df-2nd 7972 df-doma 17993 df-homa 17995 |
| This theorem is referenced by: arwhoma 18014 idadm 18030 homdmcoa 18036 coaval 18037 |
| Copyright terms: Public domain | W3C validator |