MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homadm Structured version   Visualization version   GIF version

Theorem homadm 17942
Description: The domain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homadm (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)

Proof of Theorem homadm
StepHypRef Expression
1 df-doma 17926 . . . 4 doma = (1st ∘ 1st )
21fveq1i 6818 . . 3 (doma𝐹) = ((1st ∘ 1st )‘𝐹)
3 fo1st 7936 . . . . 5 1st :V–onto→V
4 fof 6730 . . . . 5 (1st :V–onto→V → 1st :V⟶V)
53, 4ax-mp 5 . . . 4 1st :V⟶V
6 elex 3457 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V)
7 fvco3 6916 . . . 4 ((1st :V⟶V ∧ 𝐹 ∈ V) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st𝐹)))
85, 6, 7sylancr 587 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st𝐹)))
92, 8eqtrid 2778 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = (1st ‘(1st𝐹)))
10 homahom.h . . . . . 6 𝐻 = (Homa𝐶)
1110homarel 17938 . . . . 5 Rel (𝑋𝐻𝑌)
12 1st2ndbr 7969 . . . . 5 ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
1311, 12mpan 690 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
1410homa1 17939 . . . 4 ((1st𝐹)(𝑋𝐻𝑌)(2nd𝐹) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
1513, 14syl 17 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
1615fveq2d 6821 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘(1st𝐹)) = (1st ‘⟨𝑋, 𝑌⟩))
17 eqid 2731 . . . 4 (Base‘𝐶) = (Base‘𝐶)
1810, 17homarcl2 17937 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
19 op1stg 7928 . . 3 ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2018, 19syl 17 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
219, 16, 203eqtrd 2770 1 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cop 4577   class class class wbr 5086  ccom 5615  Rel wrel 5616  wf 6472  ontowfo 6474  cfv 6476  (class class class)co 7341  1st c1st 7914  2nd c2nd 7915  Basecbs 17115  domacdoma 17922  Homachoma 17925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-1st 7916  df-2nd 7917  df-doma 17926  df-homa 17928
This theorem is referenced by:  arwhoma  17947  idadm  17963  homdmcoa  17969  coaval  17970
  Copyright terms: Public domain W3C validator