![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > homadm | Structured version Visualization version GIF version |
Description: The domain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
homahom.h | ⊢ 𝐻 = (Homa‘𝐶) |
Ref | Expression |
---|---|
homadm | ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-doma 17980 | . . . 4 ⊢ doma = (1st ∘ 1st ) | |
2 | 1 | fveq1i 6893 | . . 3 ⊢ (doma‘𝐹) = ((1st ∘ 1st )‘𝐹) |
3 | fo1st 7999 | . . . . 5 ⊢ 1st :V–onto→V | |
4 | fof 6806 | . . . . 5 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 1st :V⟶V |
6 | elex 3491 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V) | |
7 | fvco3 6991 | . . . 4 ⊢ ((1st :V⟶V ∧ 𝐹 ∈ V) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st ‘𝐹))) | |
8 | 5, 6, 7 | sylancr 585 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st ‘𝐹))) |
9 | 2, 8 | eqtrid 2782 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = (1st ‘(1st ‘𝐹))) |
10 | homahom.h | . . . . . 6 ⊢ 𝐻 = (Homa‘𝐶) | |
11 | 10 | homarel 17992 | . . . . 5 ⊢ Rel (𝑋𝐻𝑌) |
12 | 1st2ndbr 8032 | . . . . 5 ⊢ ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) | |
13 | 11, 12 | mpan 686 | . . . 4 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹)) |
14 | 10 | homa1 17993 | . . . 4 ⊢ ((1st ‘𝐹)(𝑋𝐻𝑌)(2nd ‘𝐹) → (1st ‘𝐹) = ⟨𝑋, 𝑌⟩) |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘𝐹) = ⟨𝑋, 𝑌⟩) |
16 | 15 | fveq2d 6896 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘(1st ‘𝐹)) = (1st ‘⟨𝑋, 𝑌⟩)) |
17 | eqid 2730 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
18 | 10, 17 | homarcl2 17991 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
19 | op1stg 7991 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋) | |
20 | 18, 19 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋) |
21 | 9, 16, 20 | 3eqtrd 2774 | 1 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (doma‘𝐹) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ⟨cop 4635 class class class wbr 5149 ∘ ccom 5681 Rel wrel 5682 ⟶wf 6540 –onto→wfo 6542 ‘cfv 6544 (class class class)co 7413 1st c1st 7977 2nd c2nd 7978 Basecbs 17150 domacdoma 17976 Homachoma 17979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-1st 7979 df-2nd 7980 df-doma 17980 df-homa 17982 |
This theorem is referenced by: arwhoma 18001 idadm 18017 homdmcoa 18023 coaval 18024 |
Copyright terms: Public domain | W3C validator |