MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homadm Structured version   Visualization version   GIF version

Theorem homadm 17996
Description: The domain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homadm (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)

Proof of Theorem homadm
StepHypRef Expression
1 df-doma 17980 . . . 4 doma = (1st ∘ 1st )
21fveq1i 6893 . . 3 (doma𝐹) = ((1st ∘ 1st )‘𝐹)
3 fo1st 7999 . . . . 5 1st :V–onto→V
4 fof 6806 . . . . 5 (1st :V–onto→V → 1st :V⟶V)
53, 4ax-mp 5 . . . 4 1st :V⟶V
6 elex 3491 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V)
7 fvco3 6991 . . . 4 ((1st :V⟶V ∧ 𝐹 ∈ V) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st𝐹)))
85, 6, 7sylancr 585 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st𝐹)))
92, 8eqtrid 2782 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = (1st ‘(1st𝐹)))
10 homahom.h . . . . . 6 𝐻 = (Homa𝐶)
1110homarel 17992 . . . . 5 Rel (𝑋𝐻𝑌)
12 1st2ndbr 8032 . . . . 5 ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
1311, 12mpan 686 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
1410homa1 17993 . . . 4 ((1st𝐹)(𝑋𝐻𝑌)(2nd𝐹) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
1513, 14syl 17 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
1615fveq2d 6896 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘(1st𝐹)) = (1st ‘⟨𝑋, 𝑌⟩))
17 eqid 2730 . . . 4 (Base‘𝐶) = (Base‘𝐶)
1810, 17homarcl2 17991 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
19 op1stg 7991 . . 3 ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2018, 19syl 17 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
219, 16, 203eqtrd 2774 1 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  Vcvv 3472  cop 4635   class class class wbr 5149  ccom 5681  Rel wrel 5682  wf 6540  ontowfo 6542  cfv 6544  (class class class)co 7413  1st c1st 7977  2nd c2nd 7978  Basecbs 17150  domacdoma 17976  Homachoma 17979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7416  df-1st 7979  df-2nd 7980  df-doma 17980  df-homa 17982
This theorem is referenced by:  arwhoma  18001  idadm  18017  homdmcoa  18023  coaval  18024
  Copyright terms: Public domain W3C validator