MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  homadm Structured version   Visualization version   GIF version

Theorem homadm 17379
Description: The domain of an arrow with known domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypothesis
Ref Expression
homahom.h 𝐻 = (Homa𝐶)
Assertion
Ref Expression
homadm (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)

Proof of Theorem homadm
StepHypRef Expression
1 df-doma 17363 . . . 4 doma = (1st ∘ 1st )
21fveq1i 6664 . . 3 (doma𝐹) = ((1st ∘ 1st )‘𝐹)
3 fo1st 7719 . . . . 5 1st :V–onto→V
4 fof 6581 . . . . 5 (1st :V–onto→V → 1st :V⟶V)
53, 4ax-mp 5 . . . 4 1st :V⟶V
6 elex 3428 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 ∈ V)
7 fvco3 6756 . . . 4 ((1st :V⟶V ∧ 𝐹 ∈ V) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st𝐹)))
85, 6, 7sylancr 590 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → ((1st ∘ 1st )‘𝐹) = (1st ‘(1st𝐹)))
92, 8syl5eq 2805 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = (1st ‘(1st𝐹)))
10 homahom.h . . . . . 6 𝐻 = (Homa𝐶)
1110homarel 17375 . . . . 5 Rel (𝑋𝐻𝑌)
12 1st2ndbr 7751 . . . . 5 ((Rel (𝑋𝐻𝑌) ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
1311, 12mpan 689 . . . 4 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹)(𝑋𝐻𝑌)(2nd𝐹))
1410homa1 17376 . . . 4 ((1st𝐹)(𝑋𝐻𝑌)(2nd𝐹) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
1513, 14syl 17 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (1st𝐹) = ⟨𝑋, 𝑌⟩)
1615fveq2d 6667 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘(1st𝐹)) = (1st ‘⟨𝑋, 𝑌⟩))
17 eqid 2758 . . . 4 (Base‘𝐶) = (Base‘𝐶)
1810, 17homarcl2 17374 . . 3 (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)))
19 op1stg 7711 . . 3 ((𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶)) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
2018, 19syl 17 . 2 (𝐹 ∈ (𝑋𝐻𝑌) → (1st ‘⟨𝑋, 𝑌⟩) = 𝑋)
219, 16, 203eqtrd 2797 1 (𝐹 ∈ (𝑋𝐻𝑌) → (doma𝐹) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3409  cop 4531   class class class wbr 5036  ccom 5532  Rel wrel 5533  wf 6336  ontowfo 6338  cfv 6340  (class class class)co 7156  1st c1st 7697  2nd c2nd 7698  Basecbs 16554  domacdoma 17359  Homachoma 17362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-1st 7699  df-2nd 7700  df-doma 17363  df-homa 17365
This theorem is referenced by:  arwhoma  17384  idadm  17400  homdmcoa  17406  coaval  17407
  Copyright terms: Public domain W3C validator