Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > homcl | Structured version Visualization version GIF version |
Description: Closure of the scalar product of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
homcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homval 30391 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) | |
2 | ffvelcdm 7015 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘𝐵) ∈ ℋ) | |
3 | 2 | anim2i 617 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ)) → (𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ)) |
4 | 3 | 3impb 1114 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ)) |
5 | hvmulcl 29663 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
7 | 1, 6 | eqeltrd 2837 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2105 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 ℂcc 10970 ℋchba 29569 ·ℎ csm 29571 ·op chot 29589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-hilex 29649 ax-hfvmul 29655 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-map 8688 df-homul 30381 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |