Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > homcl | Structured version Visualization version GIF version |
Description: Closure of the scalar product of a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
homcl | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) ∈ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | homval 30103 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) | |
2 | ffvelrn 6959 | . . . . 5 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘𝐵) ∈ ℋ) | |
3 | 2 | anim2i 617 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ)) → (𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ)) |
4 | 3 | 3impb 1114 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ)) |
5 | hvmulcl 29375 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) | |
6 | 4, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ℎ (𝑇‘𝐵)) ∈ ℋ) |
7 | 1, 6 | eqeltrd 2839 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) ∈ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℋchba 29281 ·ℎ csm 29283 ·op chot 29301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-hilex 29361 ax-hfvmul 29367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-homul 30093 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |