HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homval Structured version   Visualization version   GIF version

Theorem homval 30103
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
homval ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))

Proof of Theorem homval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hommval 30098 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
21fveq1d 6776 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))‘𝐵))
3 fveq2 6774 . . . . 5 (𝑥 = 𝐵 → (𝑇𝑥) = (𝑇𝐵))
43oveq2d 7291 . . . 4 (𝑥 = 𝐵 → (𝐴 · (𝑇𝑥)) = (𝐴 · (𝑇𝐵)))
5 eqid 2738 . . . 4 (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))
6 ovex 7308 . . . 4 (𝐴 · (𝑇𝐵)) ∈ V
74, 5, 6fvmpt 6875 . . 3 (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))‘𝐵) = (𝐴 · (𝑇𝐵)))
82, 7sylan9eq 2798 . 2 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
983impa 1109 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  chba 29281   · csm 29283   ·op chot 29301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-homul 30093
This theorem is referenced by:  homcl  30108  honegsubi  30158  homulid2  30162  homco1  30163  homulass  30164  hoadddi  30165  hoadddir  30166  nmopnegi  30327  homco2  30339  lnopmi  30362  hmopm  30383  nmophmi  30393  adjmul  30454  leopmuli  30495  leopnmid  30500
  Copyright terms: Public domain W3C validator