| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > homval | Structured version Visualization version GIF version | ||
| Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| homval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hommval 31722 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) | |
| 2 | 1 | fveq1d 6883 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))‘𝐵)) |
| 3 | fveq2 6881 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑇‘𝑥) = (𝑇‘𝐵)) | |
| 4 | 3 | oveq2d 7426 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ·ℎ (𝑇‘𝑥)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
| 5 | eqid 2736 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))) | |
| 6 | ovex 7443 | . . . 4 ⊢ (𝐴 ·ℎ (𝑇‘𝐵)) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6991 | . . 3 ⊢ (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
| 8 | 2, 7 | sylan9eq 2791 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
| 9 | 8 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 ℋchba 30905 ·ℎ csm 30907 ·op chot 30925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-hilex 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-homul 31717 |
| This theorem is referenced by: homcl 31732 honegsubi 31782 homullid 31786 homco1 31787 homulass 31788 hoadddi 31789 hoadddir 31790 nmopnegi 31951 homco2 31963 lnopmi 31986 hmopm 32007 nmophmi 32017 adjmul 32078 leopmuli 32119 leopnmid 32124 |
| Copyright terms: Public domain | W3C validator |