Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > homval | Structured version Visualization version GIF version |
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
homval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hommval 30086 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) | |
2 | 1 | fveq1d 6771 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))‘𝐵)) |
3 | fveq2 6769 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑇‘𝑥) = (𝑇‘𝐵)) | |
4 | 3 | oveq2d 7285 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ·ℎ (𝑇‘𝑥)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
5 | eqid 2740 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))) | |
6 | ovex 7302 | . . . 4 ⊢ (𝐴 ·ℎ (𝑇‘𝐵)) ∈ V | |
7 | 4, 5, 6 | fvmpt 6870 | . . 3 ⊢ (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
8 | 2, 7 | sylan9eq 2800 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
9 | 8 | 3impa 1109 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ↦ cmpt 5162 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 ℂcc 10862 ℋchba 29269 ·ℎ csm 29271 ·op chot 29289 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-hilex 29349 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-map 8592 df-homul 30081 |
This theorem is referenced by: homcl 30096 honegsubi 30146 homulid2 30150 homco1 30151 homulass 30152 hoadddi 30153 hoadddir 30154 nmopnegi 30315 homco2 30327 lnopmi 30350 hmopm 30371 nmophmi 30381 adjmul 30442 leopmuli 30483 leopnmid 30488 |
Copyright terms: Public domain | W3C validator |