HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homval Structured version   Visualization version   GIF version

Theorem homval 31723
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
homval ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))

Proof of Theorem homval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hommval 31718 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
21fveq1d 6830 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))‘𝐵))
3 fveq2 6828 . . . . 5 (𝑥 = 𝐵 → (𝑇𝑥) = (𝑇𝐵))
43oveq2d 7368 . . . 4 (𝑥 = 𝐵 → (𝐴 · (𝑇𝑥)) = (𝐴 · (𝑇𝐵)))
5 eqid 2733 . . . 4 (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))
6 ovex 7385 . . . 4 (𝐴 · (𝑇𝐵)) ∈ V
74, 5, 6fvmpt 6935 . . 3 (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))‘𝐵) = (𝐴 · (𝑇𝐵)))
82, 7sylan9eq 2788 . 2 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
983impa 1109 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cmpt 5174  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  chba 30901   · csm 30903   ·op chot 30921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-hilex 30981
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-homul 31713
This theorem is referenced by:  homcl  31728  honegsubi  31778  homullid  31782  homco1  31783  homulass  31784  hoadddi  31785  hoadddir  31786  nmopnegi  31947  homco2  31959  lnopmi  31982  hmopm  32003  nmophmi  32013  adjmul  32074  leopmuli  32115  leopnmid  32120
  Copyright terms: Public domain W3C validator