![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > homval | Structured version Visualization version GIF version |
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
homval | ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hommval 31540 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))) | |
2 | 1 | fveq1d 6894 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))‘𝐵)) |
3 | fveq2 6892 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑇‘𝑥) = (𝑇‘𝐵)) | |
4 | 3 | oveq2d 7431 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ·ℎ (𝑇‘𝑥)) = (𝐴 ·ℎ (𝑇‘𝐵))) |
5 | eqid 2728 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥))) | |
6 | ovex 7448 | . . . 4 ⊢ (𝐴 ·ℎ (𝑇‘𝐵)) ∈ V | |
7 | 4, 5, 6 | fvmpt 7000 | . . 3 ⊢ (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝐴 ·ℎ (𝑇‘𝑥)))‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
8 | 2, 7 | sylan9eq 2788 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
9 | 8 | 3impa 1108 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 ·ℎ (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5226 ⟶wf 6539 ‘cfv 6543 (class class class)co 7415 ℂcc 11131 ℋchba 30723 ·ℎ csm 30725 ·op chot 30743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-hilex 30803 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-map 8841 df-homul 31535 |
This theorem is referenced by: homcl 31550 honegsubi 31600 homullid 31604 homco1 31605 homulass 31606 hoadddi 31607 hoadddir 31608 nmopnegi 31769 homco2 31781 lnopmi 31804 hmopm 31825 nmophmi 31835 adjmul 31896 leopmuli 31937 leopnmid 31942 |
Copyright terms: Public domain | W3C validator |