HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homval Structured version   Visualization version   GIF version

Theorem homval 31727
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
homval ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))

Proof of Theorem homval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hommval 31722 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
21fveq1d 6883 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))‘𝐵))
3 fveq2 6881 . . . . 5 (𝑥 = 𝐵 → (𝑇𝑥) = (𝑇𝐵))
43oveq2d 7426 . . . 4 (𝑥 = 𝐵 → (𝐴 · (𝑇𝑥)) = (𝐴 · (𝑇𝐵)))
5 eqid 2736 . . . 4 (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))
6 ovex 7443 . . . 4 (𝐴 · (𝑇𝐵)) ∈ V
74, 5, 6fvmpt 6991 . . 3 (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))‘𝐵) = (𝐴 · (𝑇𝐵)))
82, 7sylan9eq 2791 . 2 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
983impa 1109 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  chba 30905   · csm 30907   ·op chot 30925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-hilex 30985
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-homul 31717
This theorem is referenced by:  homcl  31732  honegsubi  31782  homullid  31786  homco1  31787  homulass  31788  hoadddi  31789  hoadddir  31790  nmopnegi  31951  homco2  31963  lnopmi  31986  hmopm  32007  nmophmi  32017  adjmul  32078  leopmuli  32119  leopnmid  32124
  Copyright terms: Public domain W3C validator