HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  homval Structured version   Visualization version   GIF version

Theorem homval 30091
Description: Value of the scalar product with a Hilbert space operator. (Contributed by NM, 20-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
homval ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))

Proof of Theorem homval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hommval 30086 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → (𝐴 ·op 𝑇) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))))
21fveq1d 6771 . . 3 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))‘𝐵))
3 fveq2 6769 . . . . 5 (𝑥 = 𝐵 → (𝑇𝑥) = (𝑇𝐵))
43oveq2d 7285 . . . 4 (𝑥 = 𝐵 → (𝐴 · (𝑇𝑥)) = (𝐴 · (𝑇𝐵)))
5 eqid 2740 . . . 4 (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥))) = (𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))
6 ovex 7302 . . . 4 (𝐴 · (𝑇𝐵)) ∈ V
74, 5, 6fvmpt 6870 . . 3 (𝐵 ∈ ℋ → ((𝑥 ∈ ℋ ↦ (𝐴 · (𝑇𝑥)))‘𝐵) = (𝐴 · (𝑇𝐵)))
82, 7sylan9eq 2800 . 2 (((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
983impa 1109 1 ((𝐴 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 ·op 𝑇)‘𝐵) = (𝐴 · (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  cmpt 5162  wf 6427  cfv 6431  (class class class)co 7269  cc 10862  chba 29269   · csm 29271   ·op chot 29289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-hilex 29349
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-map 8592  df-homul 30081
This theorem is referenced by:  homcl  30096  honegsubi  30146  homulid2  30150  homco1  30151  homulass  30152  hoadddi  30153  hoadddir  30154  nmopnegi  30315  homco2  30327  lnopmi  30350  hmopm  30371  nmophmi  30381  adjmul  30442  leopmuli  30483  leopnmid  30488
  Copyright terms: Public domain W3C validator