| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2735 |
. . . . . 6
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 2 | | eqid 2735 |
. . . . . 6
⊢ (Hom
‘𝐴) = (Hom
‘𝐴) |
| 3 | | eqid 2735 |
. . . . . 6
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 4 | | funchomf.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹(𝐴 Func 𝐶)𝐺) |
| 5 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝐹(𝐴 Func 𝐶)𝐺) |
| 6 | | simprl 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝐴)) |
| 7 | | simprr 772 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴)) |
| 8 | 1, 2, 3, 5, 6, 7 | funcf2 17879 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐶)(𝐹‘𝑦))) |
| 9 | 8 | ffnd 6706 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥𝐺𝑦) Fn (𝑥(Hom ‘𝐴)𝑦)) |
| 10 | | eqid 2735 |
. . . . . 6
⊢
(Base‘𝐵) =
(Base‘𝐵) |
| 11 | | eqid 2735 |
. . . . . 6
⊢ (Hom
‘𝐵) = (Hom
‘𝐵) |
| 12 | | eqid 2735 |
. . . . . 6
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
| 13 | | funchomf.2 |
. . . . . . 7
⊢ (𝜑 → 𝐹(𝐵 Func 𝐷)𝐺) |
| 14 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝐹(𝐵 Func 𝐷)𝐺) |
| 15 | | eqid 2735 |
. . . . . . . . . . 11
⊢
(Base‘𝐶) =
(Base‘𝐶) |
| 16 | 1, 15, 4 | funcf1 17877 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(Base‘𝐴)⟶(Base‘𝐶)) |
| 17 | 16 | ffnd 6706 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn (Base‘𝐴)) |
| 18 | | eqid 2735 |
. . . . . . . . . . 11
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 19 | 10, 18, 13 | funcf1 17877 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(Base‘𝐵)⟶(Base‘𝐷)) |
| 20 | 19 | ffnd 6706 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn (Base‘𝐵)) |
| 21 | | fndmu 6644 |
. . . . . . . . 9
⊢ ((𝐹 Fn (Base‘𝐴) ∧ 𝐹 Fn (Base‘𝐵)) → (Base‘𝐴) = (Base‘𝐵)) |
| 22 | 17, 20, 21 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐵)) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘𝐴) = (Base‘𝐵)) |
| 24 | 6, 23 | eleqtrd 2836 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝐵)) |
| 25 | 7, 23 | eleqtrd 2836 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐵)) |
| 26 | 10, 11, 12, 14, 24, 25 | funcf2 17879 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐵)𝑦)⟶((𝐹‘𝑥)(Hom ‘𝐷)(𝐹‘𝑦))) |
| 27 | 26 | ffnd 6706 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥𝐺𝑦) Fn (𝑥(Hom ‘𝐵)𝑦)) |
| 28 | | fndmu 6644 |
. . . 4
⊢ (((𝑥𝐺𝑦) Fn (𝑥(Hom ‘𝐴)𝑦) ∧ (𝑥𝐺𝑦) Fn (𝑥(Hom ‘𝐵)𝑦)) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)) |
| 29 | 9, 27, 28 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)) |
| 30 | 29 | ralrimivva 3187 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)) |
| 31 | | eqidd 2736 |
. . 3
⊢ (𝜑 → (Base‘𝐴) = (Base‘𝐴)) |
| 32 | 2, 11, 31, 22 | homfeq 17704 |
. 2
⊢ (𝜑 → ((Homf
‘𝐴) =
(Homf ‘𝐵) ↔ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))) |
| 33 | 30, 32 | mpbird 257 |
1
⊢ (𝜑 → (Homf
‘𝐴) =
(Homf ‘𝐵)) |