Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funchomf Structured version   Visualization version   GIF version

Theorem funchomf 49005
Description: Source categories of a functor have the same set of objects and morphisms. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
funchomf.1 (𝜑𝐹(𝐴 Func 𝐶)𝐺)
funchomf.2 (𝜑𝐹(𝐵 Func 𝐷)𝐺)
Assertion
Ref Expression
funchomf (𝜑 → (Homf𝐴) = (Homf𝐵))

Proof of Theorem funchomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
2 eqid 2735 . . . . . 6 (Hom ‘𝐴) = (Hom ‘𝐴)
3 eqid 2735 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
4 funchomf.1 . . . . . . 7 (𝜑𝐹(𝐴 Func 𝐶)𝐺)
54adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝐹(𝐴 Func 𝐶)𝐺)
6 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝐴))
7 simprr 772 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
81, 2, 3, 5, 6, 7funcf2 17879 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐴)𝑦)⟶((𝐹𝑥)(Hom ‘𝐶)(𝐹𝑦)))
98ffnd 6706 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥𝐺𝑦) Fn (𝑥(Hom ‘𝐴)𝑦))
10 eqid 2735 . . . . . 6 (Base‘𝐵) = (Base‘𝐵)
11 eqid 2735 . . . . . 6 (Hom ‘𝐵) = (Hom ‘𝐵)
12 eqid 2735 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
13 funchomf.2 . . . . . . 7 (𝜑𝐹(𝐵 Func 𝐷)𝐺)
1413adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝐹(𝐵 Func 𝐷)𝐺)
15 eqid 2735 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
161, 15, 4funcf1 17877 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝐴)⟶(Base‘𝐶))
1716ffnd 6706 . . . . . . . . 9 (𝜑𝐹 Fn (Base‘𝐴))
18 eqid 2735 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
1910, 18, 13funcf1 17877 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝐵)⟶(Base‘𝐷))
2019ffnd 6706 . . . . . . . . 9 (𝜑𝐹 Fn (Base‘𝐵))
21 fndmu 6644 . . . . . . . . 9 ((𝐹 Fn (Base‘𝐴) ∧ 𝐹 Fn (Base‘𝐵)) → (Base‘𝐴) = (Base‘𝐵))
2217, 20, 21syl2anc 584 . . . . . . . 8 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (Base‘𝐴) = (Base‘𝐵))
246, 23eleqtrd 2836 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝐵))
257, 23eleqtrd 2836 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐵))
2610, 11, 12, 14, 24, 25funcf2 17879 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥𝐺𝑦):(𝑥(Hom ‘𝐵)𝑦)⟶((𝐹𝑥)(Hom ‘𝐷)(𝐹𝑦)))
2726ffnd 6706 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥𝐺𝑦) Fn (𝑥(Hom ‘𝐵)𝑦))
28 fndmu 6644 . . . 4 (((𝑥𝐺𝑦) Fn (𝑥(Hom ‘𝐴)𝑦) ∧ (𝑥𝐺𝑦) Fn (𝑥(Hom ‘𝐵)𝑦)) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
299, 27, 28syl2anc 584 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
3029ralrimivva 3187 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
31 eqidd 2736 . . 3 (𝜑 → (Base‘𝐴) = (Base‘𝐴))
322, 11, 31, 22homfeq 17704 . 2 (𝜑 → ((Homf𝐴) = (Homf𝐵) ↔ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)(𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦)))
3330, 32mpbird 257 1 (𝜑 → (Homf𝐴) = (Homf𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051   class class class wbr 5119   Fn wfn 6525  cfv 6530  (class class class)co 7403  Basecbs 17226  Hom chom 17280  Homf chomf 17676   Func cfunc 17865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-ixp 8910  df-homf 17680  df-func 17869
This theorem is referenced by:  idfu1stalem  49007  idfu2nda  49010  fthcomf  49045
  Copyright terms: Public domain W3C validator