| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idfu1sta | Structured version Visualization version GIF version | ||
| Description: Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.) |
| Ref | Expression |
|---|---|
| idfu2nda.i | ⊢ 𝐼 = (idfunc‘𝐶) |
| idfu2nda.d | ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) |
| idfu2nda.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) |
| Ref | Expression |
|---|---|
| idfu1sta | ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idfu2nda.i | . . 3 ⊢ 𝐼 = (idfunc‘𝐶) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 3 | idfu2nda.d | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝐷 Func 𝐸)) | |
| 4 | 1, 3 | eqeltrrid 2834 | . . . 4 ⊢ (𝜑 → (idfunc‘𝐶) ∈ (𝐷 Func 𝐸)) |
| 5 | idfurcl 49091 | . . . 4 ⊢ ((idfunc‘𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | 1, 2, 6 | idfu1st 17848 | . 2 ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ (Base‘𝐶))) |
| 8 | idfu2nda.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝐷)) | |
| 9 | 1, 3, 8 | idfu1stalem 49093 | . . 3 ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) |
| 10 | 9 | reseq2d 5953 | . 2 ⊢ (𝜑 → ( I ↾ 𝐵) = ( I ↾ (Base‘𝐶))) |
| 11 | 7, 10 | eqtr4d 2768 | 1 ⊢ (𝜑 → (1st ‘𝐼) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 I cid 5535 ↾ cres 5643 ‘cfv 6514 (class class class)co 7390 1st c1st 7969 Basecbs 17186 Catccat 17632 Func cfunc 17823 idfunccidfu 17824 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 df-ixp 8874 df-cat 17636 df-cid 17637 df-homf 17638 df-func 17827 df-idfu 17828 |
| This theorem is referenced by: imaidfu2lem 49102 imaidfu 49103 imaidfu2 49104 idsubc 49153 |
| Copyright terms: Public domain | W3C validator |