Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfu1a Structured version   Visualization version   GIF version

Theorem idfu1a 49095
Description: Value of the object part of the identity functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypotheses
Ref Expression
idfu2nda.i 𝐼 = (idfunc𝐶)
idfu2nda.d (𝜑𝐼 ∈ (𝐷 Func 𝐸))
idfu2nda.b (𝜑𝐵 = (Base‘𝐷))
idfu2nda.x (𝜑𝑋𝐵)
Assertion
Ref Expression
idfu1a (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)

Proof of Theorem idfu1a
StepHypRef Expression
1 idfu2nda.i . 2 𝐼 = (idfunc𝐶)
2 eqid 2730 . 2 (Base‘𝐶) = (Base‘𝐶)
3 idfu2nda.d . . . 4 (𝜑𝐼 ∈ (𝐷 Func 𝐸))
41, 3eqeltrrid 2834 . . 3 (𝜑 → (idfunc𝐶) ∈ (𝐷 Func 𝐸))
5 idfurcl 49091 . . 3 ((idfunc𝐶) ∈ (𝐷 Func 𝐸) → 𝐶 ∈ Cat)
64, 5syl 17 . 2 (𝜑𝐶 ∈ Cat)
7 idfu2nda.x . . 3 (𝜑𝑋𝐵)
8 idfu2nda.b . . . 4 (𝜑𝐵 = (Base‘𝐷))
91, 3, 8idfu1stalem 49093 . . 3 (𝜑𝐵 = (Base‘𝐶))
107, 9eleqtrd 2831 . 2 (𝜑𝑋 ∈ (Base‘𝐶))
111, 2, 6, 10idfu1 17849 1 (𝜑 → ((1st𝐼)‘𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  1st c1st 7969  Basecbs 17186  Catccat 17632   Func cfunc 17823  idfunccidfu 17824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-cat 17636  df-cid 17637  df-homf 17638  df-func 17827  df-idfu 17828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator