MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idmot Structured version   Visualization version   GIF version

Theorem idmot 28516
Description: The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
Assertion
Ref Expression
idmot (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))

Proof of Theorem idmot
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motgrp.1 . 2 (𝜑𝐺𝑉)
2 f1oi 6806 . . 3 ( I ↾ 𝑃):𝑃1-1-onto𝑃
32a1i 11 . 2 (𝜑 → ( I ↾ 𝑃):𝑃1-1-onto𝑃)
4 fvresi 7113 . . . . 5 (𝑎𝑃 → (( I ↾ 𝑃)‘𝑎) = 𝑎)
54ad2antrl 728 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (( I ↾ 𝑃)‘𝑎) = 𝑎)
6 fvresi 7113 . . . . 5 (𝑏𝑃 → (( I ↾ 𝑃)‘𝑏) = 𝑏)
76ad2antll 729 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (( I ↾ 𝑃)‘𝑏) = 𝑏)
85, 7oveq12d 7370 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))
98ralrimivva 3176 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))
10 ismot.p . . . 4 𝑃 = (Base‘𝐺)
11 ismot.m . . . 4 = (dist‘𝐺)
1210, 11ismot 28514 . . 3 (𝐺𝑉 → (( I ↾ 𝑃) ∈ (𝐺Ismt𝐺) ↔ (( I ↾ 𝑃):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))))
1312biimpar 477 . 2 ((𝐺𝑉 ∧ (( I ↾ 𝑃):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
141, 3, 9, 13syl12anc 836 1 (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048   I cid 5513  cres 5621  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Basecbs 17122  distcds 17172  Ismtcismt 28511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-ismt 28512
This theorem is referenced by:  motgrp  28522
  Copyright terms: Public domain W3C validator