![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idmot | Structured version Visualization version GIF version |
Description: The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
ismot.m | ⊢ − = (dist‘𝐺) |
motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
Ref | Expression |
---|---|
idmot | ⊢ (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | motgrp.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
2 | f1oi 6858 | . . 3 ⊢ ( I ↾ 𝑃):𝑃–1-1-onto→𝑃 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ( I ↾ 𝑃):𝑃–1-1-onto→𝑃) |
4 | fvresi 7155 | . . . . 5 ⊢ (𝑎 ∈ 𝑃 → (( I ↾ 𝑃)‘𝑎) = 𝑎) | |
5 | 4 | ad2antrl 726 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (( I ↾ 𝑃)‘𝑎) = 𝑎) |
6 | fvresi 7155 | . . . . 5 ⊢ (𝑏 ∈ 𝑃 → (( I ↾ 𝑃)‘𝑏) = 𝑏) | |
7 | 6 | ad2antll 727 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (( I ↾ 𝑃)‘𝑏) = 𝑏) |
8 | 5, 7 | oveq12d 7411 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏)) |
9 | 8 | ralrimivva 3199 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏)) |
10 | ismot.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
11 | ismot.m | . . . 4 ⊢ − = (dist‘𝐺) | |
12 | 10, 11 | ismot 27651 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (( I ↾ 𝑃) ∈ (𝐺Ismt𝐺) ↔ (( I ↾ 𝑃):𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏)))) |
13 | 12 | biimpar 478 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ (( I ↾ 𝑃):𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏))) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
14 | 1, 3, 9, 13 | syl12anc 835 | 1 ⊢ (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3060 I cid 5566 ↾ cres 5671 –1-1-onto→wf1o 6531 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 distcds 17188 Ismtcismt 27648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-map 8805 df-ismt 27649 |
This theorem is referenced by: motgrp 27659 |
Copyright terms: Public domain | W3C validator |