MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idmot Structured version   Visualization version   GIF version

Theorem idmot 28546
Description: The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
Assertion
Ref Expression
idmot (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))

Proof of Theorem idmot
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motgrp.1 . 2 (𝜑𝐺𝑉)
2 f1oi 6885 . . 3 ( I ↾ 𝑃):𝑃1-1-onto𝑃
32a1i 11 . 2 (𝜑 → ( I ↾ 𝑃):𝑃1-1-onto𝑃)
4 fvresi 7194 . . . . 5 (𝑎𝑃 → (( I ↾ 𝑃)‘𝑎) = 𝑎)
54ad2antrl 728 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (( I ↾ 𝑃)‘𝑎) = 𝑎)
6 fvresi 7194 . . . . 5 (𝑏𝑃 → (( I ↾ 𝑃)‘𝑏) = 𝑏)
76ad2antll 729 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (( I ↾ 𝑃)‘𝑏) = 𝑏)
85, 7oveq12d 7450 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))
98ralrimivva 3201 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))
10 ismot.p . . . 4 𝑃 = (Base‘𝐺)
11 ismot.m . . . 4 = (dist‘𝐺)
1210, 11ismot 28544 . . 3 (𝐺𝑉 → (( I ↾ 𝑃) ∈ (𝐺Ismt𝐺) ↔ (( I ↾ 𝑃):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))))
1312biimpar 477 . 2 ((𝐺𝑉 ∧ (( I ↾ 𝑃):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
141, 3, 9, 13syl12anc 836 1 (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wral 3060   I cid 5576  cres 5686  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  Basecbs 17248  distcds 17307  Ismtcismt 28541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-map 8869  df-ismt 28542
This theorem is referenced by:  motgrp  28552
  Copyright terms: Public domain W3C validator