| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idmot | Structured version Visualization version GIF version | ||
| Description: The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismot.m | ⊢ − = (dist‘𝐺) |
| motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| idmot | ⊢ (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | motgrp.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 2 | f1oi 6801 | . . 3 ⊢ ( I ↾ 𝑃):𝑃–1-1-onto→𝑃 | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ( I ↾ 𝑃):𝑃–1-1-onto→𝑃) |
| 4 | fvresi 7107 | . . . . 5 ⊢ (𝑎 ∈ 𝑃 → (( I ↾ 𝑃)‘𝑎) = 𝑎) | |
| 5 | 4 | ad2antrl 728 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (( I ↾ 𝑃)‘𝑎) = 𝑎) |
| 6 | fvresi 7107 | . . . . 5 ⊢ (𝑏 ∈ 𝑃 → (( I ↾ 𝑃)‘𝑏) = 𝑏) | |
| 7 | 6 | ad2antll 729 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (( I ↾ 𝑃)‘𝑏) = 𝑏) |
| 8 | 5, 7 | oveq12d 7364 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏)) |
| 9 | 8 | ralrimivva 3175 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏)) |
| 10 | ismot.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 11 | ismot.m | . . . 4 ⊢ − = (dist‘𝐺) | |
| 12 | 10, 11 | ismot 28511 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (( I ↾ 𝑃) ∈ (𝐺Ismt𝐺) ↔ (( I ↾ 𝑃):𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏)))) |
| 13 | 12 | biimpar 477 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ (( I ↾ 𝑃):𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏))) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
| 14 | 1, 3, 9, 13 | syl12anc 836 | 1 ⊢ (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 I cid 5510 ↾ cres 5618 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 distcds 17167 Ismtcismt 28508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ismt 28509 |
| This theorem is referenced by: motgrp 28519 |
| Copyright terms: Public domain | W3C validator |