Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idmot | Structured version Visualization version GIF version |
Description: The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
ismot.m | ⊢ − = (dist‘𝐺) |
motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
Ref | Expression |
---|---|
idmot | ⊢ (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | motgrp.1 | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
2 | f1oi 6698 | . . 3 ⊢ ( I ↾ 𝑃):𝑃–1-1-onto→𝑃 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → ( I ↾ 𝑃):𝑃–1-1-onto→𝑃) |
4 | fvresi 6988 | . . . . 5 ⊢ (𝑎 ∈ 𝑃 → (( I ↾ 𝑃)‘𝑎) = 𝑎) | |
5 | 4 | ad2antrl 728 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (( I ↾ 𝑃)‘𝑎) = 𝑎) |
6 | fvresi 6988 | . . . . 5 ⊢ (𝑏 ∈ 𝑃 → (( I ↾ 𝑃)‘𝑏) = 𝑏) | |
7 | 6 | ad2antll 729 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → (( I ↾ 𝑃)‘𝑏) = 𝑏) |
8 | 5, 7 | oveq12d 7231 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃)) → ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏)) |
9 | 8 | ralrimivva 3112 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏)) |
10 | ismot.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
11 | ismot.m | . . . 4 ⊢ − = (dist‘𝐺) | |
12 | 10, 11 | ismot 26626 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (( I ↾ 𝑃) ∈ (𝐺Ismt𝐺) ↔ (( I ↾ 𝑃):𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏)))) |
13 | 12 | biimpar 481 | . 2 ⊢ ((𝐺 ∈ 𝑉 ∧ (( I ↾ 𝑃):𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((( I ↾ 𝑃)‘𝑎) − (( I ↾ 𝑃)‘𝑏)) = (𝑎 − 𝑏))) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
14 | 1, 3, 9, 13 | syl12anc 837 | 1 ⊢ (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 I cid 5454 ↾ cres 5553 –1-1-onto→wf1o 6379 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 distcds 16811 Ismtcismt 26623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-map 8510 df-ismt 26624 |
This theorem is referenced by: motgrp 26634 |
Copyright terms: Public domain | W3C validator |