MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idmot Structured version   Visualization version   GIF version

Theorem idmot 26802
Description: The identity is a motion. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
Assertion
Ref Expression
idmot (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))

Proof of Theorem idmot
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motgrp.1 . 2 (𝜑𝐺𝑉)
2 f1oi 6737 . . 3 ( I ↾ 𝑃):𝑃1-1-onto𝑃
32a1i 11 . 2 (𝜑 → ( I ↾ 𝑃):𝑃1-1-onto𝑃)
4 fvresi 7027 . . . . 5 (𝑎𝑃 → (( I ↾ 𝑃)‘𝑎) = 𝑎)
54ad2antrl 724 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (( I ↾ 𝑃)‘𝑎) = 𝑎)
6 fvresi 7027 . . . . 5 (𝑏𝑃 → (( I ↾ 𝑃)‘𝑏) = 𝑏)
76ad2antll 725 . . . 4 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → (( I ↾ 𝑃)‘𝑏) = 𝑏)
85, 7oveq12d 7273 . . 3 ((𝜑 ∧ (𝑎𝑃𝑏𝑃)) → ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))
98ralrimivva 3114 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))
10 ismot.p . . . 4 𝑃 = (Base‘𝐺)
11 ismot.m . . . 4 = (dist‘𝐺)
1210, 11ismot 26800 . . 3 (𝐺𝑉 → (( I ↾ 𝑃) ∈ (𝐺Ismt𝐺) ↔ (( I ↾ 𝑃):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))))
1312biimpar 477 . 2 ((𝐺𝑉 ∧ (( I ↾ 𝑃):𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((( I ↾ 𝑃)‘𝑎) (( I ↾ 𝑃)‘𝑏)) = (𝑎 𝑏))) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
141, 3, 9, 13syl12anc 833 1 (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063   I cid 5479  cres 5582  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  distcds 16897  Ismtcismt 26797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ismt 26798
This theorem is referenced by:  motgrp  26808
  Copyright terms: Public domain W3C validator