MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motcgr Structured version   Visualization version   GIF version

Theorem motcgr 27478
Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motcgr.a (𝜑𝐴𝑃)
motcgr.b (𝜑𝐵𝑃)
motcgr.f (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motcgr (𝜑 → ((𝐹𝐴) (𝐹𝐵)) = (𝐴 𝐵))

Proof of Theorem motcgr
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 motcgr.a . 2 (𝜑𝐴𝑃)
2 motcgr.b . 2 (𝜑𝐵𝑃)
3 motcgr.f . . . 4 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
4 motgrp.1 . . . . 5 (𝜑𝐺𝑉)
5 ismot.p . . . . . 6 𝑃 = (Base‘𝐺)
6 ismot.m . . . . . 6 = (dist‘𝐺)
75, 6ismot 27477 . . . . 5 (𝐺𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
84, 7syl 17 . . . 4 (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))))
93, 8mpbid 231 . . 3 (𝜑 → (𝐹:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏)))
109simprd 496 . 2 (𝜑 → ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏))
11 fveq2 6842 . . . . 5 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
1211oveq1d 7372 . . . 4 (𝑎 = 𝐴 → ((𝐹𝑎) (𝐹𝑏)) = ((𝐹𝐴) (𝐹𝑏)))
13 oveq1 7364 . . . 4 (𝑎 = 𝐴 → (𝑎 𝑏) = (𝐴 𝑏))
1412, 13eqeq12d 2752 . . 3 (𝑎 = 𝐴 → (((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏) ↔ ((𝐹𝐴) (𝐹𝑏)) = (𝐴 𝑏)))
15 fveq2 6842 . . . . 5 (𝑏 = 𝐵 → (𝐹𝑏) = (𝐹𝐵))
1615oveq2d 7373 . . . 4 (𝑏 = 𝐵 → ((𝐹𝐴) (𝐹𝑏)) = ((𝐹𝐴) (𝐹𝐵)))
17 oveq2 7365 . . . 4 (𝑏 = 𝐵 → (𝐴 𝑏) = (𝐴 𝐵))
1816, 17eqeq12d 2752 . . 3 (𝑏 = 𝐵 → (((𝐹𝐴) (𝐹𝑏)) = (𝐴 𝑏) ↔ ((𝐹𝐴) (𝐹𝐵)) = (𝐴 𝐵)))
1914, 18rspc2va 3591 . 2 (((𝐴𝑃𝐵𝑃) ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) (𝐹𝑏)) = (𝑎 𝑏)) → ((𝐹𝐴) (𝐹𝐵)) = (𝐴 𝐵))
201, 2, 10, 19syl21anc 836 1 (𝜑 → ((𝐹𝐴) (𝐹𝐵)) = (𝐴 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Basecbs 17083  distcds 17142  Ismtcismt 27474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-map 8767  df-ismt 27475
This theorem is referenced by:  motco  27482  cnvmot  27483  motcgrg  27486  motcgr3  27487
  Copyright terms: Public domain W3C validator