|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > motcgr | Structured version Visualization version GIF version | ||
| Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.) | 
| Ref | Expression | 
|---|---|
| ismot.p | ⊢ 𝑃 = (Base‘𝐺) | 
| ismot.m | ⊢ − = (dist‘𝐺) | 
| motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) | 
| motcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| motcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| motcgr.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | 
| Ref | Expression | 
|---|---|
| motcgr | ⊢ (𝜑 → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | motcgr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 2 | motcgr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 3 | motcgr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
| 4 | motgrp.1 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 5 | ismot.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 6 | ismot.m | . . . . . 6 ⊢ − = (dist‘𝐺) | |
| 7 | 5, 6 | ismot 28544 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) | 
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) | 
| 9 | 3, 8 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏))) | 
| 10 | 9 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)) | 
| 11 | fveq2 6905 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
| 12 | 11 | oveq1d 7447 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) − (𝐹‘𝑏)) = ((𝐹‘𝐴) − (𝐹‘𝑏))) | 
| 13 | oveq1 7439 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 − 𝑏) = (𝐴 − 𝑏)) | |
| 14 | 12, 13 | eqeq12d 2752 | . . 3 ⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏) ↔ ((𝐹‘𝐴) − (𝐹‘𝑏)) = (𝐴 − 𝑏))) | 
| 15 | fveq2 6905 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | |
| 16 | 15 | oveq2d 7448 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝐹‘𝐴) − (𝐹‘𝑏)) = ((𝐹‘𝐴) − (𝐹‘𝐵))) | 
| 17 | oveq2 7440 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 − 𝑏) = (𝐴 − 𝐵)) | |
| 18 | 16, 17 | eqeq12d 2752 | . . 3 ⊢ (𝑏 = 𝐵 → (((𝐹‘𝐴) − (𝐹‘𝑏)) = (𝐴 − 𝑏) ↔ ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵))) | 
| 19 | 14, 18 | rspc2va 3633 | . 2 ⊢ (((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)) → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) | 
| 20 | 1, 2, 10, 19 | syl21anc 837 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 –1-1-onto→wf1o 6559 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 distcds 17307 Ismtcismt 28541 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-map 8869 df-ismt 28542 | 
| This theorem is referenced by: motco 28549 cnvmot 28550 motcgrg 28553 motcgr3 28554 | 
| Copyright terms: Public domain | W3C validator |