Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > motcgr | Structured version Visualization version GIF version |
Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
Ref | Expression |
---|---|
ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
ismot.m | ⊢ − = (dist‘𝐺) |
motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
motcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
motcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
motcgr.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
Ref | Expression |
---|---|
motcgr | ⊢ (𝜑 → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | motcgr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
2 | motcgr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
3 | motcgr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
4 | motgrp.1 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
5 | ismot.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
6 | ismot.m | . . . . . 6 ⊢ − = (dist‘𝐺) | |
7 | 5, 6 | ismot 26800 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
9 | 3, 8 | mpbid 231 | . . 3 ⊢ (𝜑 → (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏))) |
10 | 9 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)) |
11 | fveq2 6756 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
12 | 11 | oveq1d 7270 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) − (𝐹‘𝑏)) = ((𝐹‘𝐴) − (𝐹‘𝑏))) |
13 | oveq1 7262 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 − 𝑏) = (𝐴 − 𝑏)) | |
14 | 12, 13 | eqeq12d 2754 | . . 3 ⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏) ↔ ((𝐹‘𝐴) − (𝐹‘𝑏)) = (𝐴 − 𝑏))) |
15 | fveq2 6756 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | |
16 | 15 | oveq2d 7271 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝐹‘𝐴) − (𝐹‘𝑏)) = ((𝐹‘𝐴) − (𝐹‘𝐵))) |
17 | oveq2 7263 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 − 𝑏) = (𝐴 − 𝐵)) | |
18 | 16, 17 | eqeq12d 2754 | . . 3 ⊢ (𝑏 = 𝐵 → (((𝐹‘𝐴) − (𝐹‘𝑏)) = (𝐴 − 𝑏) ↔ ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵))) |
19 | 14, 18 | rspc2va 3563 | . 2 ⊢ (((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)) → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) |
20 | 1, 2, 10, 19 | syl21anc 834 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 Ismtcismt 26797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-ismt 26798 |
This theorem is referenced by: motco 26805 cnvmot 26806 motcgrg 26809 motcgr3 26810 |
Copyright terms: Public domain | W3C validator |