| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > motcgr | Structured version Visualization version GIF version | ||
| Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismot.m | ⊢ − = (dist‘𝐺) |
| motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| motcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| motcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| motcgr.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
| Ref | Expression |
|---|---|
| motcgr | ⊢ (𝜑 → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | motcgr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 2 | motcgr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 3 | motcgr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
| 4 | motgrp.1 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 5 | ismot.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 6 | ismot.m | . . . . . 6 ⊢ − = (dist‘𝐺) | |
| 7 | 5, 6 | ismot 28513 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
| 9 | 3, 8 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏))) |
| 10 | 9 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)) |
| 11 | fveq2 6822 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
| 12 | 11 | oveq1d 7361 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) − (𝐹‘𝑏)) = ((𝐹‘𝐴) − (𝐹‘𝑏))) |
| 13 | oveq1 7353 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 − 𝑏) = (𝐴 − 𝑏)) | |
| 14 | 12, 13 | eqeq12d 2747 | . . 3 ⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏) ↔ ((𝐹‘𝐴) − (𝐹‘𝑏)) = (𝐴 − 𝑏))) |
| 15 | fveq2 6822 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | |
| 16 | 15 | oveq2d 7362 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝐹‘𝐴) − (𝐹‘𝑏)) = ((𝐹‘𝐴) − (𝐹‘𝐵))) |
| 17 | oveq2 7354 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 − 𝑏) = (𝐴 − 𝐵)) | |
| 18 | 16, 17 | eqeq12d 2747 | . . 3 ⊢ (𝑏 = 𝐵 → (((𝐹‘𝐴) − (𝐹‘𝑏)) = (𝐴 − 𝑏) ↔ ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵))) |
| 19 | 14, 18 | rspc2va 3584 | . 2 ⊢ (((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)) → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) |
| 20 | 1, 2, 10, 19 | syl21anc 837 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 distcds 17170 Ismtcismt 28510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ismt 28511 |
| This theorem is referenced by: motco 28518 cnvmot 28519 motcgrg 28522 motcgr3 28523 |
| Copyright terms: Public domain | W3C validator |