| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > motcgr | Structured version Visualization version GIF version | ||
| Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.) |
| Ref | Expression |
|---|---|
| ismot.p | ⊢ 𝑃 = (Base‘𝐺) |
| ismot.m | ⊢ − = (dist‘𝐺) |
| motgrp.1 | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| motcgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| motcgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| motcgr.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
| Ref | Expression |
|---|---|
| motcgr | ⊢ (𝜑 → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | motcgr.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 2 | motcgr.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 3 | motcgr.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
| 4 | motgrp.1 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 5 | ismot.p | . . . . . 6 ⊢ 𝑃 = (Base‘𝐺) | |
| 6 | ismot.m | . . . . . 6 ⊢ − = (dist‘𝐺) | |
| 7 | 5, 6 | ismot 28469 | . . . . 5 ⊢ (𝐺 ∈ 𝑉 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
| 8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (𝐺Ismt𝐺) ↔ (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)))) |
| 9 | 3, 8 | mpbid 232 | . . 3 ⊢ (𝜑 → (𝐹:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏))) |
| 10 | 9 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)) |
| 11 | fveq2 6865 | . . . . 5 ⊢ (𝑎 = 𝐴 → (𝐹‘𝑎) = (𝐹‘𝐴)) | |
| 12 | 11 | oveq1d 7409 | . . . 4 ⊢ (𝑎 = 𝐴 → ((𝐹‘𝑎) − (𝐹‘𝑏)) = ((𝐹‘𝐴) − (𝐹‘𝑏))) |
| 13 | oveq1 7401 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 − 𝑏) = (𝐴 − 𝑏)) | |
| 14 | 12, 13 | eqeq12d 2746 | . . 3 ⊢ (𝑎 = 𝐴 → (((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏) ↔ ((𝐹‘𝐴) − (𝐹‘𝑏)) = (𝐴 − 𝑏))) |
| 15 | fveq2 6865 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝐹‘𝑏) = (𝐹‘𝐵)) | |
| 16 | 15 | oveq2d 7410 | . . . 4 ⊢ (𝑏 = 𝐵 → ((𝐹‘𝐴) − (𝐹‘𝑏)) = ((𝐹‘𝐴) − (𝐹‘𝐵))) |
| 17 | oveq2 7402 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝐴 − 𝑏) = (𝐴 − 𝐵)) | |
| 18 | 16, 17 | eqeq12d 2746 | . . 3 ⊢ (𝑏 = 𝐵 → (((𝐹‘𝐴) − (𝐹‘𝑏)) = (𝐴 − 𝑏) ↔ ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵))) |
| 19 | 14, 18 | rspc2va 3609 | . 2 ⊢ (((𝐴 ∈ 𝑃 ∧ 𝐵 ∈ 𝑃) ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝐹‘𝑎) − (𝐹‘𝑏)) = (𝑎 − 𝑏)) → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) |
| 20 | 1, 2, 10, 19 | syl21anc 837 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) − (𝐹‘𝐵)) = (𝐴 − 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 –1-1-onto→wf1o 6518 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 distcds 17235 Ismtcismt 28466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-map 8805 df-ismt 28467 |
| This theorem is referenced by: motco 28474 cnvmot 28475 motcgrg 28478 motcgr3 28479 |
| Copyright terms: Public domain | W3C validator |