Step | Hyp | Ref
| Expression |
1 | | motcgr.a |
. 2
β’ (π β π΄ β π) |
2 | | motcgr.b |
. 2
β’ (π β π΅ β π) |
3 | | motcgr.f |
. . . 4
β’ (π β πΉ β (πΊIsmtπΊ)) |
4 | | motgrp.1 |
. . . . 5
β’ (π β πΊ β π) |
5 | | ismot.p |
. . . . . 6
β’ π = (BaseβπΊ) |
6 | | ismot.m |
. . . . . 6
β’ β =
(distβπΊ) |
7 | 5, 6 | ismot 27775 |
. . . . 5
β’ (πΊ β π β (πΉ β (πΊIsmtπΊ) β (πΉ:πβ1-1-ontoβπ β§ βπ β π βπ β π ((πΉβπ) β (πΉβπ)) = (π β π)))) |
8 | 4, 7 | syl 17 |
. . . 4
β’ (π β (πΉ β (πΊIsmtπΊ) β (πΉ:πβ1-1-ontoβπ β§ βπ β π βπ β π ((πΉβπ) β (πΉβπ)) = (π β π)))) |
9 | 3, 8 | mpbid 231 |
. . 3
β’ (π β (πΉ:πβ1-1-ontoβπ β§ βπ β π βπ β π ((πΉβπ) β (πΉβπ)) = (π β π))) |
10 | 9 | simprd 496 |
. 2
β’ (π β βπ β π βπ β π ((πΉβπ) β (πΉβπ)) = (π β π)) |
11 | | fveq2 6888 |
. . . . 5
β’ (π = π΄ β (πΉβπ) = (πΉβπ΄)) |
12 | 11 | oveq1d 7420 |
. . . 4
β’ (π = π΄ β ((πΉβπ) β (πΉβπ)) = ((πΉβπ΄) β (πΉβπ))) |
13 | | oveq1 7412 |
. . . 4
β’ (π = π΄ β (π β π) = (π΄ β π)) |
14 | 12, 13 | eqeq12d 2748 |
. . 3
β’ (π = π΄ β (((πΉβπ) β (πΉβπ)) = (π β π) β ((πΉβπ΄) β (πΉβπ)) = (π΄ β π))) |
15 | | fveq2 6888 |
. . . . 5
β’ (π = π΅ β (πΉβπ) = (πΉβπ΅)) |
16 | 15 | oveq2d 7421 |
. . . 4
β’ (π = π΅ β ((πΉβπ΄) β (πΉβπ)) = ((πΉβπ΄) β (πΉβπ΅))) |
17 | | oveq2 7413 |
. . . 4
β’ (π = π΅ β (π΄ β π) = (π΄ β π΅)) |
18 | 16, 17 | eqeq12d 2748 |
. . 3
β’ (π = π΅ β (((πΉβπ΄) β (πΉβπ)) = (π΄ β π) β ((πΉβπ΄) β (πΉβπ΅)) = (π΄ β π΅))) |
19 | 14, 18 | rspc2va 3622 |
. 2
β’ (((π΄ β π β§ π΅ β π) β§ βπ β π βπ β π ((πΉβπ) β (πΉβπ)) = (π β π)) β ((πΉβπ΄) β (πΉβπ΅)) = (π΄ β π΅)) |
20 | 1, 2, 10, 19 | syl21anc 836 |
1
β’ (π β ((πΉβπ΄) β (πΉβπ΅)) = (π΄ β π΅)) |