MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motgrp Structured version   Visualization version   GIF version

Theorem motgrp 28566
Description: The motions of a geometry form a group with respect to function composition, called the Isometry group. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
Assertion
Ref Expression
motgrp (𝜑𝐼 ∈ Grp)
Distinct variable groups:   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑃,𝑓,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motgrp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . . 3 (𝐺Ismt𝐺) ∈ V
2 motgrp.i . . . 4 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
32grpbase 17332 . . 3 ((𝐺Ismt𝐺) ∈ V → (𝐺Ismt𝐺) = (Base‘𝐼))
41, 3mp1i 13 . 2 (𝜑 → (𝐺Ismt𝐺) = (Base‘𝐼))
5 eqidd 2736 . 2 (𝜑 → (+g𝐼) = (+g𝐼))
6 ismot.p . . . 4 𝑃 = (Base‘𝐺)
7 ismot.m . . . 4 = (dist‘𝐺)
8 motgrp.1 . . . . 5 (𝜑𝐺𝑉)
983ad2ant1 1132 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝐺𝑉)
10 simp2 1136 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
11 simp3 1137 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑔 ∈ (𝐺Ismt𝐺))
126, 7, 9, 2, 10, 11motplusg 28565 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑔) = (𝑓𝑔))
136, 7, 9, 10, 11motco 28563 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓𝑔) ∈ (𝐺Ismt𝐺))
1412, 13eqeltrd 2839 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑔) ∈ (𝐺Ismt𝐺))
15 coass 6287 . . 3 ((𝑓𝑔) ∘ ) = (𝑓 ∘ (𝑔))
16123adant3r3 1183 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)𝑔) = (𝑓𝑔))
1716oveq1d 7446 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = ((𝑓𝑔)(+g𝐼)))
188adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝐺𝑉)
19133adant3r3 1183 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓𝑔) ∈ (𝐺Ismt𝐺))
20 simpr3 1195 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ∈ (𝐺Ismt𝐺))
216, 7, 18, 2, 19, 20motplusg 28565 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓𝑔)(+g𝐼)) = ((𝑓𝑔) ∘ ))
2217, 21eqtrd 2775 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = ((𝑓𝑔) ∘ ))
23 simpr2 1194 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝑔 ∈ (𝐺Ismt𝐺))
246, 7, 18, 2, 23, 20motplusg 28565 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑔(+g𝐼)) = (𝑔))
2524oveq2d 7447 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔(+g𝐼))) = (𝑓(+g𝐼)(𝑔)))
26 simpr1 1193 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝑓 ∈ (𝐺Ismt𝐺))
276, 7, 18, 23, 20motco 28563 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑔) ∈ (𝐺Ismt𝐺))
286, 7, 18, 2, 26, 27motplusg 28565 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔)) = (𝑓 ∘ (𝑔)))
2925, 28eqtrd 2775 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔(+g𝐼))) = (𝑓 ∘ (𝑔)))
3015, 22, 293eqtr4a 2801 . 2 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = (𝑓(+g𝐼)(𝑔(+g𝐼))))
316, 7, 8idmot 28560 . 2 (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
328adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝐺𝑉)
3331adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
34 simpr 484 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
356, 7, 32, 2, 33, 34motplusg 28565 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g𝐼)𝑓) = (( I ↾ 𝑃) ∘ 𝑓))
366, 7ismot 28558 . . . . . 6 (𝐺𝑉 → (𝑓 ∈ (𝐺Ismt𝐺) ↔ (𝑓:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝑓𝑎) (𝑓𝑏)) = (𝑎 𝑏))))
3736simprbda 498 . . . . 5 ((𝐺𝑉𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃1-1-onto𝑃)
388, 37sylan 580 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃1-1-onto𝑃)
39 f1of 6849 . . . 4 (𝑓:𝑃1-1-onto𝑃𝑓:𝑃𝑃)
40 fcoi2 6784 . . . 4 (𝑓:𝑃𝑃 → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓)
4138, 39, 403syl 18 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓)
4235, 41eqtrd 2775 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g𝐼)𝑓) = 𝑓)
436, 7, 32, 34cnvmot 28564 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
446, 7, 32, 2, 43, 34motplusg 28565 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑓) = (𝑓𝑓))
45 f1ococnv1 6878 . . . 4 (𝑓:𝑃1-1-onto𝑃 → (𝑓𝑓) = ( I ↾ 𝑃))
4638, 45syl 17 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓𝑓) = ( I ↾ 𝑃))
4744, 46eqtrd 2775 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑓) = ( I ↾ 𝑃))
484, 5, 14, 30, 31, 42, 43, 47isgrpd 18989 1 (𝜑𝐼 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  {cpr 4633  cop 4637   I cid 5582  ccnv 5688  cres 5691  ccom 5693  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cmpo 7433  ndxcnx 17227  Basecbs 17245  +gcplusg 17298  distcds 17307  Grpcgrp 18964  Ismtcismt 28555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-ismt 28556
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator