MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motgrp Structured version   Visualization version   GIF version

Theorem motgrp 26337
Description: The motions of a geometry form a group with respect to function composition, called the Isometry group. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
Assertion
Ref Expression
motgrp (𝜑𝐼 ∈ Grp)
Distinct variable groups:   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑃,𝑓,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motgrp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7168 . . 3 (𝐺Ismt𝐺) ∈ V
2 motgrp.i . . . 4 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
32grpbase 16602 . . 3 ((𝐺Ismt𝐺) ∈ V → (𝐺Ismt𝐺) = (Base‘𝐼))
41, 3mp1i 13 . 2 (𝜑 → (𝐺Ismt𝐺) = (Base‘𝐼))
5 eqidd 2799 . 2 (𝜑 → (+g𝐼) = (+g𝐼))
6 ismot.p . . . 4 𝑃 = (Base‘𝐺)
7 ismot.m . . . 4 = (dist‘𝐺)
8 motgrp.1 . . . . 5 (𝜑𝐺𝑉)
983ad2ant1 1130 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝐺𝑉)
10 simp2 1134 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
11 simp3 1135 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑔 ∈ (𝐺Ismt𝐺))
126, 7, 9, 2, 10, 11motplusg 26336 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑔) = (𝑓𝑔))
136, 7, 9, 10, 11motco 26334 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓𝑔) ∈ (𝐺Ismt𝐺))
1412, 13eqeltrd 2890 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑔) ∈ (𝐺Ismt𝐺))
15 coass 6085 . . 3 ((𝑓𝑔) ∘ ) = (𝑓 ∘ (𝑔))
16123adant3r3 1181 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)𝑔) = (𝑓𝑔))
1716oveq1d 7150 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = ((𝑓𝑔)(+g𝐼)))
188adantr 484 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝐺𝑉)
19133adant3r3 1181 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓𝑔) ∈ (𝐺Ismt𝐺))
20 simpr3 1193 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ∈ (𝐺Ismt𝐺))
216, 7, 18, 2, 19, 20motplusg 26336 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓𝑔)(+g𝐼)) = ((𝑓𝑔) ∘ ))
2217, 21eqtrd 2833 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = ((𝑓𝑔) ∘ ))
23 simpr2 1192 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝑔 ∈ (𝐺Ismt𝐺))
246, 7, 18, 2, 23, 20motplusg 26336 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑔(+g𝐼)) = (𝑔))
2524oveq2d 7151 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔(+g𝐼))) = (𝑓(+g𝐼)(𝑔)))
26 simpr1 1191 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝑓 ∈ (𝐺Ismt𝐺))
276, 7, 18, 23, 20motco 26334 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑔) ∈ (𝐺Ismt𝐺))
286, 7, 18, 2, 26, 27motplusg 26336 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔)) = (𝑓 ∘ (𝑔)))
2925, 28eqtrd 2833 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔(+g𝐼))) = (𝑓 ∘ (𝑔)))
3015, 22, 293eqtr4a 2859 . 2 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = (𝑓(+g𝐼)(𝑔(+g𝐼))))
316, 7, 8idmot 26331 . 2 (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
328adantr 484 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝐺𝑉)
3331adantr 484 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
34 simpr 488 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
356, 7, 32, 2, 33, 34motplusg 26336 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g𝐼)𝑓) = (( I ↾ 𝑃) ∘ 𝑓))
366, 7ismot 26329 . . . . . 6 (𝐺𝑉 → (𝑓 ∈ (𝐺Ismt𝐺) ↔ (𝑓:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝑓𝑎) (𝑓𝑏)) = (𝑎 𝑏))))
3736simprbda 502 . . . . 5 ((𝐺𝑉𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃1-1-onto𝑃)
388, 37sylan 583 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃1-1-onto𝑃)
39 f1of 6590 . . . 4 (𝑓:𝑃1-1-onto𝑃𝑓:𝑃𝑃)
40 fcoi2 6527 . . . 4 (𝑓:𝑃𝑃 → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓)
4138, 39, 403syl 18 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓)
4235, 41eqtrd 2833 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g𝐼)𝑓) = 𝑓)
436, 7, 32, 34cnvmot 26335 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
446, 7, 32, 2, 43, 34motplusg 26336 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑓) = (𝑓𝑓))
45 f1ococnv1 6618 . . . 4 (𝑓:𝑃1-1-onto𝑃 → (𝑓𝑓) = ( I ↾ 𝑃))
4638, 45syl 17 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓𝑓) = ( I ↾ 𝑃))
4744, 46eqtrd 2833 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑓) = ( I ↾ 𝑃))
484, 5, 14, 30, 31, 42, 43, 47isgrpd 18117 1 (𝜑𝐼 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  {cpr 4527  cop 4531   I cid 5424  ccnv 5518  cres 5521  ccom 5523  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cmpo 7137  ndxcnx 16472  Basecbs 16475  +gcplusg 16557  distcds 16566  Grpcgrp 18095  Ismtcismt 26326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-ismt 26327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator