Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  motgrp Structured version   Visualization version   GIF version

Theorem motgrp 26450
 Description: The motions of a geometry form a group with respect to function composition, called the Isometry group. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
Assertion
Ref Expression
motgrp (𝜑𝐼 ∈ Grp)
Distinct variable groups:   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑃,𝑓,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motgrp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7189 . . 3 (𝐺Ismt𝐺) ∈ V
2 motgrp.i . . . 4 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
32grpbase 16682 . . 3 ((𝐺Ismt𝐺) ∈ V → (𝐺Ismt𝐺) = (Base‘𝐼))
41, 3mp1i 13 . 2 (𝜑 → (𝐺Ismt𝐺) = (Base‘𝐼))
5 eqidd 2759 . 2 (𝜑 → (+g𝐼) = (+g𝐼))
6 ismot.p . . . 4 𝑃 = (Base‘𝐺)
7 ismot.m . . . 4 = (dist‘𝐺)
8 motgrp.1 . . . . 5 (𝜑𝐺𝑉)
983ad2ant1 1130 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝐺𝑉)
10 simp2 1134 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
11 simp3 1135 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑔 ∈ (𝐺Ismt𝐺))
126, 7, 9, 2, 10, 11motplusg 26449 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑔) = (𝑓𝑔))
136, 7, 9, 10, 11motco 26447 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓𝑔) ∈ (𝐺Ismt𝐺))
1412, 13eqeltrd 2852 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑔) ∈ (𝐺Ismt𝐺))
15 coass 6100 . . 3 ((𝑓𝑔) ∘ ) = (𝑓 ∘ (𝑔))
16123adant3r3 1181 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)𝑔) = (𝑓𝑔))
1716oveq1d 7171 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = ((𝑓𝑔)(+g𝐼)))
188adantr 484 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝐺𝑉)
19133adant3r3 1181 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓𝑔) ∈ (𝐺Ismt𝐺))
20 simpr3 1193 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ∈ (𝐺Ismt𝐺))
216, 7, 18, 2, 19, 20motplusg 26449 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓𝑔)(+g𝐼)) = ((𝑓𝑔) ∘ ))
2217, 21eqtrd 2793 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = ((𝑓𝑔) ∘ ))
23 simpr2 1192 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝑔 ∈ (𝐺Ismt𝐺))
246, 7, 18, 2, 23, 20motplusg 26449 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑔(+g𝐼)) = (𝑔))
2524oveq2d 7172 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔(+g𝐼))) = (𝑓(+g𝐼)(𝑔)))
26 simpr1 1191 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝑓 ∈ (𝐺Ismt𝐺))
276, 7, 18, 23, 20motco 26447 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑔) ∈ (𝐺Ismt𝐺))
286, 7, 18, 2, 26, 27motplusg 26449 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔)) = (𝑓 ∘ (𝑔)))
2925, 28eqtrd 2793 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔(+g𝐼))) = (𝑓 ∘ (𝑔)))
3015, 22, 293eqtr4a 2819 . 2 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = (𝑓(+g𝐼)(𝑔(+g𝐼))))
316, 7, 8idmot 26444 . 2 (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
328adantr 484 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝐺𝑉)
3331adantr 484 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
34 simpr 488 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
356, 7, 32, 2, 33, 34motplusg 26449 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g𝐼)𝑓) = (( I ↾ 𝑃) ∘ 𝑓))
366, 7ismot 26442 . . . . . 6 (𝐺𝑉 → (𝑓 ∈ (𝐺Ismt𝐺) ↔ (𝑓:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝑓𝑎) (𝑓𝑏)) = (𝑎 𝑏))))
3736simprbda 502 . . . . 5 ((𝐺𝑉𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃1-1-onto𝑃)
388, 37sylan 583 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃1-1-onto𝑃)
39 f1of 6607 . . . 4 (𝑓:𝑃1-1-onto𝑃𝑓:𝑃𝑃)
40 fcoi2 6543 . . . 4 (𝑓:𝑃𝑃 → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓)
4138, 39, 403syl 18 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓)
4235, 41eqtrd 2793 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g𝐼)𝑓) = 𝑓)
436, 7, 32, 34cnvmot 26448 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
446, 7, 32, 2, 43, 34motplusg 26449 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑓) = (𝑓𝑓))
45 f1ococnv1 6635 . . . 4 (𝑓:𝑃1-1-onto𝑃 → (𝑓𝑓) = ( I ↾ 𝑃))
4638, 45syl 17 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓𝑓) = ( I ↾ 𝑃))
4744, 46eqtrd 2793 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑓) = ( I ↾ 𝑃))
484, 5, 14, 30, 31, 42, 43, 47isgrpd 18206 1 (𝜑𝐼 ∈ Grp)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070  Vcvv 3409  {cpr 4527  ⟨cop 4531   I cid 5433  ◡ccnv 5527   ↾ cres 5530   ∘ ccom 5532  ⟶wf 6336  –1-1-onto→wf1o 6339  ‘cfv 6340  (class class class)co 7156   ∈ cmpo 7158  ndxcnx 16552  Basecbs 16555  +gcplusg 16637  distcds 16646  Grpcgrp 18183  Ismtcismt 26439 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-n0 11948  df-z 12034  df-uz 12296  df-fz 12953  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-plusg 16650  df-0g 16787  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-grp 18186  df-ismt 26440 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator