MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motgrp Structured version   Visualization version   GIF version

Theorem motgrp 28551
Description: The motions of a geometry form a group with respect to function composition, called the Isometry group. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
Assertion
Ref Expression
motgrp (𝜑𝐼 ∈ Grp)
Distinct variable groups:   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑃,𝑓,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motgrp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7464 . . 3 (𝐺Ismt𝐺) ∈ V
2 motgrp.i . . . 4 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
32grpbase 17330 . . 3 ((𝐺Ismt𝐺) ∈ V → (𝐺Ismt𝐺) = (Base‘𝐼))
41, 3mp1i 13 . 2 (𝜑 → (𝐺Ismt𝐺) = (Base‘𝐼))
5 eqidd 2738 . 2 (𝜑 → (+g𝐼) = (+g𝐼))
6 ismot.p . . . 4 𝑃 = (Base‘𝐺)
7 ismot.m . . . 4 = (dist‘𝐺)
8 motgrp.1 . . . . 5 (𝜑𝐺𝑉)
983ad2ant1 1134 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝐺𝑉)
10 simp2 1138 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
11 simp3 1139 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑔 ∈ (𝐺Ismt𝐺))
126, 7, 9, 2, 10, 11motplusg 28550 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑔) = (𝑓𝑔))
136, 7, 9, 10, 11motco 28548 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓𝑔) ∈ (𝐺Ismt𝐺))
1412, 13eqeltrd 2841 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑔) ∈ (𝐺Ismt𝐺))
15 coass 6285 . . 3 ((𝑓𝑔) ∘ ) = (𝑓 ∘ (𝑔))
16123adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)𝑔) = (𝑓𝑔))
1716oveq1d 7446 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = ((𝑓𝑔)(+g𝐼)))
188adantr 480 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝐺𝑉)
19133adant3r3 1185 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓𝑔) ∈ (𝐺Ismt𝐺))
20 simpr3 1197 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ∈ (𝐺Ismt𝐺))
216, 7, 18, 2, 19, 20motplusg 28550 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓𝑔)(+g𝐼)) = ((𝑓𝑔) ∘ ))
2217, 21eqtrd 2777 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = ((𝑓𝑔) ∘ ))
23 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝑔 ∈ (𝐺Ismt𝐺))
246, 7, 18, 2, 23, 20motplusg 28550 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑔(+g𝐼)) = (𝑔))
2524oveq2d 7447 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔(+g𝐼))) = (𝑓(+g𝐼)(𝑔)))
26 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝑓 ∈ (𝐺Ismt𝐺))
276, 7, 18, 23, 20motco 28548 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑔) ∈ (𝐺Ismt𝐺))
286, 7, 18, 2, 26, 27motplusg 28550 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔)) = (𝑓 ∘ (𝑔)))
2925, 28eqtrd 2777 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔(+g𝐼))) = (𝑓 ∘ (𝑔)))
3015, 22, 293eqtr4a 2803 . 2 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = (𝑓(+g𝐼)(𝑔(+g𝐼))))
316, 7, 8idmot 28545 . 2 (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
328adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝐺𝑉)
3331adantr 480 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
34 simpr 484 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
356, 7, 32, 2, 33, 34motplusg 28550 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g𝐼)𝑓) = (( I ↾ 𝑃) ∘ 𝑓))
366, 7ismot 28543 . . . . . 6 (𝐺𝑉 → (𝑓 ∈ (𝐺Ismt𝐺) ↔ (𝑓:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝑓𝑎) (𝑓𝑏)) = (𝑎 𝑏))))
3736simprbda 498 . . . . 5 ((𝐺𝑉𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃1-1-onto𝑃)
388, 37sylan 580 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃1-1-onto𝑃)
39 f1of 6848 . . . 4 (𝑓:𝑃1-1-onto𝑃𝑓:𝑃𝑃)
40 fcoi2 6783 . . . 4 (𝑓:𝑃𝑃 → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓)
4138, 39, 403syl 18 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓)
4235, 41eqtrd 2777 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g𝐼)𝑓) = 𝑓)
436, 7, 32, 34cnvmot 28549 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
446, 7, 32, 2, 43, 34motplusg 28550 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑓) = (𝑓𝑓))
45 f1ococnv1 6877 . . . 4 (𝑓:𝑃1-1-onto𝑃 → (𝑓𝑓) = ( I ↾ 𝑃))
4638, 45syl 17 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓𝑓) = ( I ↾ 𝑃))
4744, 46eqtrd 2777 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑓) = ( I ↾ 𝑃))
484, 5, 14, 30, 31, 42, 43, 47isgrpd 18976 1 (𝜑𝐼 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  {cpr 4628  cop 4632   I cid 5577  ccnv 5684  cres 5687  ccom 5689  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cmpo 7433  ndxcnx 17230  Basecbs 17247  +gcplusg 17297  distcds 17306  Grpcgrp 18951  Ismtcismt 28540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-ismt 28541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator