Step | Hyp | Ref
| Expression |
1 | | ovex 7308 |
. . 3
⊢ (𝐺Ismt𝐺) ∈ V |
2 | | motgrp.i |
. . . 4
⊢ 𝐼 = {〈(Base‘ndx),
(𝐺Ismt𝐺)〉, 〈(+g‘ndx),
(𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓 ∘ 𝑔))〉} |
3 | 2 | grpbase 16996 |
. . 3
⊢ ((𝐺Ismt𝐺) ∈ V → (𝐺Ismt𝐺) = (Base‘𝐼)) |
4 | 1, 3 | mp1i 13 |
. 2
⊢ (𝜑 → (𝐺Ismt𝐺) = (Base‘𝐼)) |
5 | | eqidd 2739 |
. 2
⊢ (𝜑 → (+g‘𝐼) = (+g‘𝐼)) |
6 | | ismot.p |
. . . 4
⊢ 𝑃 = (Base‘𝐺) |
7 | | ismot.m |
. . . 4
⊢ − =
(dist‘𝐺) |
8 | | motgrp.1 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝑉) |
9 | 8 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝐺 ∈ 𝑉) |
10 | | simp2 1136 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺)) |
11 | | simp3 1137 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑔 ∈ (𝐺Ismt𝐺)) |
12 | 6, 7, 9, 2, 10, 11 | motplusg 26903 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g‘𝐼)𝑔) = (𝑓 ∘ 𝑔)) |
13 | 6, 7, 9, 10, 11 | motco 26901 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓 ∘ 𝑔) ∈ (𝐺Ismt𝐺)) |
14 | 12, 13 | eqeltrd 2839 |
. 2
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g‘𝐼)𝑔) ∈ (𝐺Ismt𝐺)) |
15 | | coass 6169 |
. . 3
⊢ ((𝑓 ∘ 𝑔) ∘ ℎ) = (𝑓 ∘ (𝑔 ∘ ℎ)) |
16 | 12 | 3adant3r3 1183 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → (𝑓(+g‘𝐼)𝑔) = (𝑓 ∘ 𝑔)) |
17 | 16 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g‘𝐼)𝑔)(+g‘𝐼)ℎ) = ((𝑓 ∘ 𝑔)(+g‘𝐼)ℎ)) |
18 | 8 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → 𝐺 ∈ 𝑉) |
19 | 13 | 3adant3r3 1183 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → (𝑓 ∘ 𝑔) ∈ (𝐺Ismt𝐺)) |
20 | | simpr3 1195 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → ℎ ∈ (𝐺Ismt𝐺)) |
21 | 6, 7, 18, 2, 19, 20 | motplusg 26903 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → ((𝑓 ∘ 𝑔)(+g‘𝐼)ℎ) = ((𝑓 ∘ 𝑔) ∘ ℎ)) |
22 | 17, 21 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g‘𝐼)𝑔)(+g‘𝐼)ℎ) = ((𝑓 ∘ 𝑔) ∘ ℎ)) |
23 | | simpr2 1194 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → 𝑔 ∈ (𝐺Ismt𝐺)) |
24 | 6, 7, 18, 2, 23, 20 | motplusg 26903 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → (𝑔(+g‘𝐼)ℎ) = (𝑔 ∘ ℎ)) |
25 | 24 | oveq2d 7291 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → (𝑓(+g‘𝐼)(𝑔(+g‘𝐼)ℎ)) = (𝑓(+g‘𝐼)(𝑔 ∘ ℎ))) |
26 | | simpr1 1193 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → 𝑓 ∈ (𝐺Ismt𝐺)) |
27 | 6, 7, 18, 23, 20 | motco 26901 |
. . . . 5
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → (𝑔 ∘ ℎ) ∈ (𝐺Ismt𝐺)) |
28 | 6, 7, 18, 2, 26, 27 | motplusg 26903 |
. . . 4
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → (𝑓(+g‘𝐼)(𝑔 ∘ ℎ)) = (𝑓 ∘ (𝑔 ∘ ℎ))) |
29 | 25, 28 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → (𝑓(+g‘𝐼)(𝑔(+g‘𝐼)ℎ)) = (𝑓 ∘ (𝑔 ∘ ℎ))) |
30 | 15, 22, 29 | 3eqtr4a 2804 |
. 2
⊢ ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ℎ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g‘𝐼)𝑔)(+g‘𝐼)ℎ) = (𝑓(+g‘𝐼)(𝑔(+g‘𝐼)ℎ))) |
31 | 6, 7, 8 | idmot 26898 |
. 2
⊢ (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
32 | 8 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → 𝐺 ∈ 𝑉) |
33 | 31 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺)) |
34 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺)) |
35 | 6, 7, 32, 2, 33, 34 | motplusg 26903 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g‘𝐼)𝑓) = (( I ↾ 𝑃) ∘ 𝑓)) |
36 | 6, 7 | ismot 26896 |
. . . . . 6
⊢ (𝐺 ∈ 𝑉 → (𝑓 ∈ (𝐺Ismt𝐺) ↔ (𝑓:𝑃–1-1-onto→𝑃 ∧ ∀𝑎 ∈ 𝑃 ∀𝑏 ∈ 𝑃 ((𝑓‘𝑎) − (𝑓‘𝑏)) = (𝑎 − 𝑏)))) |
37 | 36 | simprbda 499 |
. . . . 5
⊢ ((𝐺 ∈ 𝑉 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃–1-1-onto→𝑃) |
38 | 8, 37 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃–1-1-onto→𝑃) |
39 | | f1of 6716 |
. . . 4
⊢ (𝑓:𝑃–1-1-onto→𝑃 → 𝑓:𝑃⟶𝑃) |
40 | | fcoi2 6649 |
. . . 4
⊢ (𝑓:𝑃⟶𝑃 → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓) |
41 | 38, 39, 40 | 3syl 18 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓) |
42 | 35, 41 | eqtrd 2778 |
. 2
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g‘𝐼)𝑓) = 𝑓) |
43 | 6, 7, 32, 34 | cnvmot 26902 |
. 2
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → ◡𝑓 ∈ (𝐺Ismt𝐺)) |
44 | 6, 7, 32, 2, 43, 34 | motplusg 26903 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → (◡𝑓(+g‘𝐼)𝑓) = (◡𝑓 ∘ 𝑓)) |
45 | | f1ococnv1 6745 |
. . . 4
⊢ (𝑓:𝑃–1-1-onto→𝑃 → (◡𝑓 ∘ 𝑓) = ( I ↾ 𝑃)) |
46 | 38, 45 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → (◡𝑓 ∘ 𝑓) = ( I ↾ 𝑃)) |
47 | 44, 46 | eqtrd 2778 |
. 2
⊢ ((𝜑 ∧ 𝑓 ∈ (𝐺Ismt𝐺)) → (◡𝑓(+g‘𝐼)𝑓) = ( I ↾ 𝑃)) |
48 | 4, 5, 14, 30, 31, 42, 43, 47 | isgrpd 18601 |
1
⊢ (𝜑 → 𝐼 ∈ Grp) |