MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motgrp Structured version   Visualization version   GIF version

Theorem motgrp 26904
Description: The motions of a geometry form a group with respect to function composition, called the Isometry group. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
Assertion
Ref Expression
motgrp (𝜑𝐼 ∈ Grp)
Distinct variable groups:   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑃,𝑓,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motgrp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7308 . . 3 (𝐺Ismt𝐺) ∈ V
2 motgrp.i . . . 4 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
32grpbase 16996 . . 3 ((𝐺Ismt𝐺) ∈ V → (𝐺Ismt𝐺) = (Base‘𝐼))
41, 3mp1i 13 . 2 (𝜑 → (𝐺Ismt𝐺) = (Base‘𝐼))
5 eqidd 2739 . 2 (𝜑 → (+g𝐼) = (+g𝐼))
6 ismot.p . . . 4 𝑃 = (Base‘𝐺)
7 ismot.m . . . 4 = (dist‘𝐺)
8 motgrp.1 . . . . 5 (𝜑𝐺𝑉)
983ad2ant1 1132 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝐺𝑉)
10 simp2 1136 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
11 simp3 1137 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → 𝑔 ∈ (𝐺Ismt𝐺))
126, 7, 9, 2, 10, 11motplusg 26903 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑔) = (𝑓𝑔))
136, 7, 9, 10, 11motco 26901 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓𝑔) ∈ (𝐺Ismt𝐺))
1412, 13eqeltrd 2839 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑔) ∈ (𝐺Ismt𝐺))
15 coass 6169 . . 3 ((𝑓𝑔) ∘ ) = (𝑓 ∘ (𝑔))
16123adant3r3 1183 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)𝑔) = (𝑓𝑔))
1716oveq1d 7290 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = ((𝑓𝑔)(+g𝐼)))
188adantr 481 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝐺𝑉)
19133adant3r3 1183 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓𝑔) ∈ (𝐺Ismt𝐺))
20 simpr3 1195 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ∈ (𝐺Ismt𝐺))
216, 7, 18, 2, 19, 20motplusg 26903 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓𝑔)(+g𝐼)) = ((𝑓𝑔) ∘ ))
2217, 21eqtrd 2778 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = ((𝑓𝑔) ∘ ))
23 simpr2 1194 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝑔 ∈ (𝐺Ismt𝐺))
246, 7, 18, 2, 23, 20motplusg 26903 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑔(+g𝐼)) = (𝑔))
2524oveq2d 7291 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔(+g𝐼))) = (𝑓(+g𝐼)(𝑔)))
26 simpr1 1193 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → 𝑓 ∈ (𝐺Ismt𝐺))
276, 7, 18, 23, 20motco 26901 . . . . 5 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑔) ∈ (𝐺Ismt𝐺))
286, 7, 18, 2, 26, 27motplusg 26903 . . . 4 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔)) = (𝑓 ∘ (𝑔)))
2925, 28eqtrd 2778 . . 3 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → (𝑓(+g𝐼)(𝑔(+g𝐼))) = (𝑓 ∘ (𝑔)))
3015, 22, 293eqtr4a 2804 . 2 ((𝜑 ∧ (𝑓 ∈ (𝐺Ismt𝐺) ∧ 𝑔 ∈ (𝐺Ismt𝐺) ∧ ∈ (𝐺Ismt𝐺))) → ((𝑓(+g𝐼)𝑔)(+g𝐼)) = (𝑓(+g𝐼)(𝑔(+g𝐼))))
316, 7, 8idmot 26898 . 2 (𝜑 → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
328adantr 481 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝐺𝑉)
3331adantr 481 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → ( I ↾ 𝑃) ∈ (𝐺Ismt𝐺))
34 simpr 485 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
356, 7, 32, 2, 33, 34motplusg 26903 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g𝐼)𝑓) = (( I ↾ 𝑃) ∘ 𝑓))
366, 7ismot 26896 . . . . . 6 (𝐺𝑉 → (𝑓 ∈ (𝐺Ismt𝐺) ↔ (𝑓:𝑃1-1-onto𝑃 ∧ ∀𝑎𝑃𝑏𝑃 ((𝑓𝑎) (𝑓𝑏)) = (𝑎 𝑏))))
3736simprbda 499 . . . . 5 ((𝐺𝑉𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃1-1-onto𝑃)
388, 37sylan 580 . . . 4 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓:𝑃1-1-onto𝑃)
39 f1of 6716 . . . 4 (𝑓:𝑃1-1-onto𝑃𝑓:𝑃𝑃)
40 fcoi2 6649 . . . 4 (𝑓:𝑃𝑃 → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓)
4138, 39, 403syl 18 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃) ∘ 𝑓) = 𝑓)
4235, 41eqtrd 2778 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (( I ↾ 𝑃)(+g𝐼)𝑓) = 𝑓)
436, 7, 32, 34cnvmot 26902 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → 𝑓 ∈ (𝐺Ismt𝐺))
446, 7, 32, 2, 43, 34motplusg 26903 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑓) = (𝑓𝑓))
45 f1ococnv1 6745 . . . 4 (𝑓:𝑃1-1-onto𝑃 → (𝑓𝑓) = ( I ↾ 𝑃))
4638, 45syl 17 . . 3 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓𝑓) = ( I ↾ 𝑃))
4744, 46eqtrd 2778 . 2 ((𝜑𝑓 ∈ (𝐺Ismt𝐺)) → (𝑓(+g𝐼)𝑓) = ( I ↾ 𝑃))
484, 5, 14, 30, 31, 42, 43, 47isgrpd 18601 1 (𝜑𝐼 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  {cpr 4563  cop 4567   I cid 5488  ccnv 5588  cres 5591  ccom 5593  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  distcds 16971  Grpcgrp 18577  Ismtcismt 26893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-ismt 26894
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator