Step | Hyp | Ref
| Expression |
1 | | reprval.a |
. . 3
β’ (π β π΄ β β) |
2 | | reprval.m |
. . 3
β’ (π β π β β€) |
3 | | 0nn0 12483 |
. . . 4
β’ 0 β
β0 |
4 | 3 | a1i 11 |
. . 3
β’ (π β 0 β
β0) |
5 | 1, 2, 4 | reprval 33610 |
. 2
β’ (π β (π΄(reprβ0)π) = {π β (π΄ βm (0..^0)) β£
Ξ£π β
(0..^0)(πβπ) = π}) |
6 | | fzo0 13652 |
. . . . . . . . 9
β’ (0..^0) =
β
|
7 | 6 | sumeq1i 15640 |
. . . . . . . 8
β’
Ξ£π β
(0..^0)(πβπ) = Ξ£π β β
(πβπ) |
8 | | sum0 15663 |
. . . . . . . 8
β’
Ξ£π β
β
(πβπ) = 0 |
9 | 7, 8 | eqtri 2760 |
. . . . . . 7
β’
Ξ£π β
(0..^0)(πβπ) = 0 |
10 | 9 | eqeq1i 2737 |
. . . . . 6
β’
(Ξ£π β
(0..^0)(πβπ) = π β 0 = π) |
11 | 10 | a1i 11 |
. . . . 5
β’ (π = β
β (Ξ£π β (0..^0)(πβπ) = π β 0 = π)) |
12 | | 0ex 5306 |
. . . . . . . . 9
β’ β
β V |
13 | 12 | snid 4663 |
. . . . . . . 8
β’ β
β {β
} |
14 | | nnex 12214 |
. . . . . . . . . . 11
β’ β
β V |
15 | 14 | a1i 11 |
. . . . . . . . . 10
β’ (π β β β
V) |
16 | 15, 1 | ssexd 5323 |
. . . . . . . . 9
β’ (π β π΄ β V) |
17 | | mapdm0 8832 |
. . . . . . . . 9
β’ (π΄ β V β (π΄ βm β
) =
{β
}) |
18 | 16, 17 | syl 17 |
. . . . . . . 8
β’ (π β (π΄ βm β
) =
{β
}) |
19 | 13, 18 | eleqtrrid 2840 |
. . . . . . 7
β’ (π β β
β (π΄ βm
β
)) |
20 | 6 | oveq2i 7416 |
. . . . . . 7
β’ (π΄ βm (0..^0)) =
(π΄ βm
β
) |
21 | 19, 20 | eleqtrrdi 2844 |
. . . . . 6
β’ (π β β
β (π΄ βm
(0..^0))) |
22 | 21 | adantr 481 |
. . . . 5
β’ ((π β§ π = 0) β β
β (π΄ βm
(0..^0))) |
23 | | simpr 485 |
. . . . . 6
β’ ((π β§ π = 0) β π = 0) |
24 | 23 | eqcomd 2738 |
. . . . 5
β’ ((π β§ π = 0) β 0 = π) |
25 | 20, 18 | eqtrid 2784 |
. . . . . . . . 9
β’ (π β (π΄ βm (0..^0)) =
{β
}) |
26 | 25 | eleq2d 2819 |
. . . . . . . 8
β’ (π β (π β (π΄ βm (0..^0)) β π β
{β
})) |
27 | 26 | biimpa 477 |
. . . . . . 7
β’ ((π β§ π β (π΄ βm (0..^0))) β π β
{β
}) |
28 | | elsni 4644 |
. . . . . . 7
β’ (π β {β
} β π = β
) |
29 | 27, 28 | syl 17 |
. . . . . 6
β’ ((π β§ π β (π΄ βm (0..^0))) β π = β
) |
30 | 29 | ad4ant13 749 |
. . . . 5
β’ ((((π β§ π = 0) β§ π β (π΄ βm (0..^0))) β§
Ξ£π β
(0..^0)(πβπ) = π) β π = β
) |
31 | 11, 22, 24, 30 | rabeqsnd 4670 |
. . . 4
β’ ((π β§ π = 0) β {π β (π΄ βm (0..^0)) β£
Ξ£π β
(0..^0)(πβπ) = π} = {β
}) |
32 | 31 | eqcomd 2738 |
. . 3
β’ ((π β§ π = 0) β {β
} = {π β (π΄ βm (0..^0)) β£
Ξ£π β
(0..^0)(πβπ) = π}) |
33 | 9 | a1i 11 |
. . . . . . . 8
β’ (((π β§ Β¬ π = 0) β§ π β (π΄ βm (0..^0))) β
Ξ£π β
(0..^0)(πβπ) = 0) |
34 | | simplr 767 |
. . . . . . . . . 10
β’ (((π β§ Β¬ π = 0) β§ π β (π΄ βm (0..^0))) β Β¬
π = 0) |
35 | 34 | neqned 2947 |
. . . . . . . . 9
β’ (((π β§ Β¬ π = 0) β§ π β (π΄ βm (0..^0))) β π β 0) |
36 | 35 | necomd 2996 |
. . . . . . . 8
β’ (((π β§ Β¬ π = 0) β§ π β (π΄ βm (0..^0))) β 0 β
π) |
37 | 33, 36 | eqnetrd 3008 |
. . . . . . 7
β’ (((π β§ Β¬ π = 0) β§ π β (π΄ βm (0..^0))) β
Ξ£π β
(0..^0)(πβπ) β π) |
38 | 37 | neneqd 2945 |
. . . . . 6
β’ (((π β§ Β¬ π = 0) β§ π β (π΄ βm (0..^0))) β Β¬
Ξ£π β
(0..^0)(πβπ) = π) |
39 | 38 | ralrimiva 3146 |
. . . . 5
β’ ((π β§ Β¬ π = 0) β βπ β (π΄ βm (0..^0)) Β¬
Ξ£π β
(0..^0)(πβπ) = π) |
40 | | rabeq0 4383 |
. . . . 5
β’ ({π β (π΄ βm (0..^0)) β£
Ξ£π β
(0..^0)(πβπ) = π} = β
β βπ β (π΄ βm (0..^0)) Β¬
Ξ£π β
(0..^0)(πβπ) = π) |
41 | 39, 40 | sylibr 233 |
. . . 4
β’ ((π β§ Β¬ π = 0) β {π β (π΄ βm (0..^0)) β£
Ξ£π β
(0..^0)(πβπ) = π} = β
) |
42 | 41 | eqcomd 2738 |
. . 3
β’ ((π β§ Β¬ π = 0) β β
= {π β (π΄ βm (0..^0)) β£
Ξ£π β
(0..^0)(πβπ) = π}) |
43 | 32, 42 | ifeqda 4563 |
. 2
β’ (π β if(π = 0, {β
}, β
) = {π β (π΄ βm (0..^0)) β£
Ξ£π β
(0..^0)(πβπ) = π}) |
44 | 5, 43 | eqtr4d 2775 |
1
β’ (π β (π΄(reprβ0)π) = if(π = 0, {β
}, β
)) |