| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > repr0 | Structured version Visualization version GIF version | ||
| Description: There is exactly one representation with no elements (an empty sum), only for 𝑀 = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| repr0 | ⊢ (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reprval.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 2 | reprval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | 0nn0 12516 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 5 | 1, 2, 4 | reprval 34642 | . 2 ⊢ (𝜑 → (𝐴(repr‘0)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
| 6 | fzo0 13700 | . . . . . . . . 9 ⊢ (0..^0) = ∅ | |
| 7 | 6 | sumeq1i 15713 | . . . . . . . 8 ⊢ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = Σ𝑎 ∈ ∅ (𝑐‘𝑎) |
| 8 | sum0 15737 | . . . . . . . 8 ⊢ Σ𝑎 ∈ ∅ (𝑐‘𝑎) = 0 | |
| 9 | 7, 8 | eqtri 2758 | . . . . . . 7 ⊢ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 0 |
| 10 | 9 | eqeq1i 2740 | . . . . . 6 ⊢ (Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀 ↔ 0 = 𝑀) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑐 = ∅ → (Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀 ↔ 0 = 𝑀)) |
| 12 | 0ex 5277 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
| 13 | 12 | snid 4638 | . . . . . . . 8 ⊢ ∅ ∈ {∅} |
| 14 | nnex 12246 | . . . . . . . . . . 11 ⊢ ℕ ∈ V | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → ℕ ∈ V) |
| 16 | 15, 1 | ssexd 5294 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ V) |
| 17 | mapdm0 8856 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝐴 ↑m ∅) = {∅}) | |
| 18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ↑m ∅) = {∅}) |
| 19 | 13, 18 | eleqtrrid 2841 | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑m ∅)) |
| 20 | 6 | oveq2i 7416 | . . . . . . 7 ⊢ (𝐴 ↑m (0..^0)) = (𝐴 ↑m ∅) |
| 21 | 19, 20 | eleqtrrdi 2845 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑m (0..^0))) |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑀 = 0) → ∅ ∈ (𝐴 ↑m (0..^0))) |
| 23 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 = 0) → 𝑀 = 0) | |
| 24 | 23 | eqcomd 2741 | . . . . 5 ⊢ ((𝜑 ∧ 𝑀 = 0) → 0 = 𝑀) |
| 25 | 20, 18 | eqtrid 2782 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ↑m (0..^0)) = {∅}) |
| 26 | 25 | eleq2d 2820 | . . . . . . . 8 ⊢ (𝜑 → (𝑐 ∈ (𝐴 ↑m (0..^0)) ↔ 𝑐 ∈ {∅})) |
| 27 | 26 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → 𝑐 ∈ {∅}) |
| 28 | elsni 4618 | . . . . . . 7 ⊢ (𝑐 ∈ {∅} → 𝑐 = ∅) | |
| 29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → 𝑐 = ∅) |
| 30 | 29 | ad4ant13 751 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) ∧ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) → 𝑐 = ∅) |
| 31 | 11, 22, 24, 30 | rabeqsnd 4645 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 = 0) → {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀} = {∅}) |
| 32 | 31 | eqcomd 2741 | . . 3 ⊢ ((𝜑 ∧ 𝑀 = 0) → {∅} = {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
| 33 | 9 | a1i 11 | . . . . . . . 8 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 0) |
| 34 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → ¬ 𝑀 = 0) | |
| 35 | 34 | neqned 2939 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → 𝑀 ≠ 0) |
| 36 | 35 | necomd 2987 | . . . . . . . 8 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → 0 ≠ 𝑀) |
| 37 | 33, 36 | eqnetrd 2999 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) ≠ 𝑀) |
| 38 | 37 | neneqd 2937 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → ¬ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) |
| 39 | 38 | ralrimiva 3132 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑀 = 0) → ∀𝑐 ∈ (𝐴 ↑m (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) |
| 40 | rabeq0 4363 | . . . . 5 ⊢ ({𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴 ↑m (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) | |
| 41 | 39, 40 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑀 = 0) → {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀} = ∅) |
| 42 | 41 | eqcomd 2741 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑀 = 0) → ∅ = {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
| 43 | 32, 42 | ifeqda 4537 | . 2 ⊢ (𝜑 → if(𝑀 = 0, {∅}, ∅) = {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
| 44 | 5, 43 | eqtr4d 2773 | 1 ⊢ (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ifcif 4500 {csn 4601 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 0cc0 11129 ℕcn 12240 ℕ0cn0 12501 ℤcz 12588 ..^cfzo 13671 Σcsu 15702 reprcrepr 34640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-repr 34641 |
| This theorem is referenced by: breprexp 34665 |
| Copyright terms: Public domain | W3C validator |