Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repr0 Structured version   Visualization version   GIF version

Theorem repr0 32491
Description: There is exactly one representation with no elements (an empty sum), only for 𝑀 = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
repr0 (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅))

Proof of Theorem repr0
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
3 0nn0 12178 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
51, 2, 4reprval 32490 . 2 (𝜑 → (𝐴(repr‘0)𝑀) = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
6 fzo0 13339 . . . . . . . . 9 (0..^0) = ∅
76sumeq1i 15338 . . . . . . . 8 Σ𝑎 ∈ (0..^0)(𝑐𝑎) = Σ𝑎 ∈ ∅ (𝑐𝑎)
8 sum0 15361 . . . . . . . 8 Σ𝑎 ∈ ∅ (𝑐𝑎) = 0
97, 8eqtri 2766 . . . . . . 7 Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 0
109eqeq1i 2743 . . . . . 6 𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀 ↔ 0 = 𝑀)
1110a1i 11 . . . . 5 (𝑐 = ∅ → (Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀 ↔ 0 = 𝑀))
12 0ex 5226 . . . . . . . . 9 ∅ ∈ V
1312snid 4594 . . . . . . . 8 ∅ ∈ {∅}
14 nnex 11909 . . . . . . . . . . 11 ℕ ∈ V
1514a1i 11 . . . . . . . . . 10 (𝜑 → ℕ ∈ V)
1615, 1ssexd 5243 . . . . . . . . 9 (𝜑𝐴 ∈ V)
17 mapdm0 8588 . . . . . . . . 9 (𝐴 ∈ V → (𝐴m ∅) = {∅})
1816, 17syl 17 . . . . . . . 8 (𝜑 → (𝐴m ∅) = {∅})
1913, 18eleqtrrid 2846 . . . . . . 7 (𝜑 → ∅ ∈ (𝐴m ∅))
206oveq2i 7266 . . . . . . 7 (𝐴m (0..^0)) = (𝐴m ∅)
2119, 20eleqtrrdi 2850 . . . . . 6 (𝜑 → ∅ ∈ (𝐴m (0..^0)))
2221adantr 480 . . . . 5 ((𝜑𝑀 = 0) → ∅ ∈ (𝐴m (0..^0)))
23 simpr 484 . . . . . 6 ((𝜑𝑀 = 0) → 𝑀 = 0)
2423eqcomd 2744 . . . . 5 ((𝜑𝑀 = 0) → 0 = 𝑀)
2520, 18syl5eq 2791 . . . . . . . . 9 (𝜑 → (𝐴m (0..^0)) = {∅})
2625eleq2d 2824 . . . . . . . 8 (𝜑 → (𝑐 ∈ (𝐴m (0..^0)) ↔ 𝑐 ∈ {∅}))
2726biimpa 476 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^0))) → 𝑐 ∈ {∅})
28 elsni 4575 . . . . . . 7 (𝑐 ∈ {∅} → 𝑐 = ∅)
2927, 28syl 17 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^0))) → 𝑐 = ∅)
3029ad4ant13 747 . . . . 5 ((((𝜑𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) ∧ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀) → 𝑐 = ∅)
3111, 22, 24, 30rabeqsnd 30749 . . . 4 ((𝜑𝑀 = 0) → {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = {∅})
3231eqcomd 2744 . . 3 ((𝜑𝑀 = 0) → {∅} = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
339a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 0)
34 simplr 765 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → ¬ 𝑀 = 0)
3534neqned 2949 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → 𝑀 ≠ 0)
3635necomd 2998 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → 0 ≠ 𝑀)
3733, 36eqnetrd 3010 . . . . . . 7 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐𝑎) ≠ 𝑀)
3837neneqd 2947 . . . . . 6 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
3938ralrimiva 3107 . . . . 5 ((𝜑 ∧ ¬ 𝑀 = 0) → ∀𝑐 ∈ (𝐴m (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
40 rabeq0 4315 . . . . 5 ({𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴m (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
4139, 40sylibr 233 . . . 4 ((𝜑 ∧ ¬ 𝑀 = 0) → {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = ∅)
4241eqcomd 2744 . . 3 ((𝜑 ∧ ¬ 𝑀 = 0) → ∅ = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
4332, 42ifeqda 4492 . 2 (𝜑 → if(𝑀 = 0, {∅}, ∅) = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
445, 43eqtr4d 2781 1 (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  Vcvv 3422  wss 3883  c0 4253  ifcif 4456  {csn 4558  cfv 6418  (class class class)co 7255  m cmap 8573  0cc0 10802  cn 11903  0cn0 12163  cz 12249  ..^cfzo 13311  Σcsu 15325  reprcrepr 32488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-repr 32489
This theorem is referenced by:  breprexp  32513
  Copyright terms: Public domain W3C validator