Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repr0 Structured version   Visualization version   GIF version

Theorem repr0 32591
Description: There is exactly one representation with no elements (an empty sum), only for 𝑀 = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
repr0 (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅))

Proof of Theorem repr0
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
3 0nn0 12248 . . . 4 0 ∈ ℕ0
43a1i 11 . . 3 (𝜑 → 0 ∈ ℕ0)
51, 2, 4reprval 32590 . 2 (𝜑 → (𝐴(repr‘0)𝑀) = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
6 fzo0 13411 . . . . . . . . 9 (0..^0) = ∅
76sumeq1i 15410 . . . . . . . 8 Σ𝑎 ∈ (0..^0)(𝑐𝑎) = Σ𝑎 ∈ ∅ (𝑐𝑎)
8 sum0 15433 . . . . . . . 8 Σ𝑎 ∈ ∅ (𝑐𝑎) = 0
97, 8eqtri 2766 . . . . . . 7 Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 0
109eqeq1i 2743 . . . . . 6 𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀 ↔ 0 = 𝑀)
1110a1i 11 . . . . 5 (𝑐 = ∅ → (Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀 ↔ 0 = 𝑀))
12 0ex 5231 . . . . . . . . 9 ∅ ∈ V
1312snid 4597 . . . . . . . 8 ∅ ∈ {∅}
14 nnex 11979 . . . . . . . . . . 11 ℕ ∈ V
1514a1i 11 . . . . . . . . . 10 (𝜑 → ℕ ∈ V)
1615, 1ssexd 5248 . . . . . . . . 9 (𝜑𝐴 ∈ V)
17 mapdm0 8630 . . . . . . . . 9 (𝐴 ∈ V → (𝐴m ∅) = {∅})
1816, 17syl 17 . . . . . . . 8 (𝜑 → (𝐴m ∅) = {∅})
1913, 18eleqtrrid 2846 . . . . . . 7 (𝜑 → ∅ ∈ (𝐴m ∅))
206oveq2i 7286 . . . . . . 7 (𝐴m (0..^0)) = (𝐴m ∅)
2119, 20eleqtrrdi 2850 . . . . . 6 (𝜑 → ∅ ∈ (𝐴m (0..^0)))
2221adantr 481 . . . . 5 ((𝜑𝑀 = 0) → ∅ ∈ (𝐴m (0..^0)))
23 simpr 485 . . . . . 6 ((𝜑𝑀 = 0) → 𝑀 = 0)
2423eqcomd 2744 . . . . 5 ((𝜑𝑀 = 0) → 0 = 𝑀)
2520, 18eqtrid 2790 . . . . . . . . 9 (𝜑 → (𝐴m (0..^0)) = {∅})
2625eleq2d 2824 . . . . . . . 8 (𝜑 → (𝑐 ∈ (𝐴m (0..^0)) ↔ 𝑐 ∈ {∅}))
2726biimpa 477 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^0))) → 𝑐 ∈ {∅})
28 elsni 4578 . . . . . . 7 (𝑐 ∈ {∅} → 𝑐 = ∅)
2927, 28syl 17 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^0))) → 𝑐 = ∅)
3029ad4ant13 748 . . . . 5 ((((𝜑𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) ∧ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀) → 𝑐 = ∅)
3111, 22, 24, 30rabeqsnd 30848 . . . 4 ((𝜑𝑀 = 0) → {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = {∅})
3231eqcomd 2744 . . 3 ((𝜑𝑀 = 0) → {∅} = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
339a1i 11 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 0)
34 simplr 766 . . . . . . . . . 10 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → ¬ 𝑀 = 0)
3534neqned 2950 . . . . . . . . 9 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → 𝑀 ≠ 0)
3635necomd 2999 . . . . . . . 8 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → 0 ≠ 𝑀)
3733, 36eqnetrd 3011 . . . . . . 7 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐𝑎) ≠ 𝑀)
3837neneqd 2948 . . . . . 6 (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴m (0..^0))) → ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
3938ralrimiva 3103 . . . . 5 ((𝜑 ∧ ¬ 𝑀 = 0) → ∀𝑐 ∈ (𝐴m (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
40 rabeq0 4318 . . . . 5 ({𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴m (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀)
4139, 40sylibr 233 . . . 4 ((𝜑 ∧ ¬ 𝑀 = 0) → {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀} = ∅)
4241eqcomd 2744 . . 3 ((𝜑 ∧ ¬ 𝑀 = 0) → ∅ = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
4332, 42ifeqda 4495 . 2 (𝜑 → if(𝑀 = 0, {∅}, ∅) = {𝑐 ∈ (𝐴m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐𝑎) = 𝑀})
445, 43eqtr4d 2781 1 (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  wss 3887  c0 4256  ifcif 4459  {csn 4561  cfv 6433  (class class class)co 7275  m cmap 8615  0cc0 10871  cn 11973  0cn0 12233  cz 12319  ..^cfzo 13382  Σcsu 15397  reprcrepr 32588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-repr 32589
This theorem is referenced by:  breprexp  32613
  Copyright terms: Public domain W3C validator