| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > repr0 | Structured version Visualization version GIF version | ||
| Description: There is exactly one representation with no elements (an empty sum), only for 𝑀 = 0. (Contributed by Thierry Arnoux, 2-Dec-2021.) |
| Ref | Expression |
|---|---|
| reprval.a | ⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| reprval.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| reprval.s | ⊢ (𝜑 → 𝑆 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| repr0 | ⊢ (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reprval.a | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℕ) | |
| 2 | reprval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 3 | 0nn0 12417 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℕ0) |
| 5 | 1, 2, 4 | reprval 34577 | . 2 ⊢ (𝜑 → (𝐴(repr‘0)𝑀) = {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
| 6 | fzo0 13604 | . . . . . . . . 9 ⊢ (0..^0) = ∅ | |
| 7 | 6 | sumeq1i 15622 | . . . . . . . 8 ⊢ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = Σ𝑎 ∈ ∅ (𝑐‘𝑎) |
| 8 | sum0 15646 | . . . . . . . 8 ⊢ Σ𝑎 ∈ ∅ (𝑐‘𝑎) = 0 | |
| 9 | 7, 8 | eqtri 2752 | . . . . . . 7 ⊢ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 0 |
| 10 | 9 | eqeq1i 2734 | . . . . . 6 ⊢ (Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀 ↔ 0 = 𝑀) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑐 = ∅ → (Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀 ↔ 0 = 𝑀)) |
| 12 | 0ex 5249 | . . . . . . . . 9 ⊢ ∅ ∈ V | |
| 13 | 12 | snid 4616 | . . . . . . . 8 ⊢ ∅ ∈ {∅} |
| 14 | nnex 12152 | . . . . . . . . . . 11 ⊢ ℕ ∈ V | |
| 15 | 14 | a1i 11 | . . . . . . . . . 10 ⊢ (𝜑 → ℕ ∈ V) |
| 16 | 15, 1 | ssexd 5266 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ V) |
| 17 | mapdm0 8776 | . . . . . . . . 9 ⊢ (𝐴 ∈ V → (𝐴 ↑m ∅) = {∅}) | |
| 18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ↑m ∅) = {∅}) |
| 19 | 13, 18 | eleqtrrid 2835 | . . . . . . 7 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑m ∅)) |
| 20 | 6 | oveq2i 7364 | . . . . . . 7 ⊢ (𝐴 ↑m (0..^0)) = (𝐴 ↑m ∅) |
| 21 | 19, 20 | eleqtrrdi 2839 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ (𝐴 ↑m (0..^0))) |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑀 = 0) → ∅ ∈ (𝐴 ↑m (0..^0))) |
| 23 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑀 = 0) → 𝑀 = 0) | |
| 24 | 23 | eqcomd 2735 | . . . . 5 ⊢ ((𝜑 ∧ 𝑀 = 0) → 0 = 𝑀) |
| 25 | 20, 18 | eqtrid 2776 | . . . . . . . . 9 ⊢ (𝜑 → (𝐴 ↑m (0..^0)) = {∅}) |
| 26 | 25 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝜑 → (𝑐 ∈ (𝐴 ↑m (0..^0)) ↔ 𝑐 ∈ {∅})) |
| 27 | 26 | biimpa 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → 𝑐 ∈ {∅}) |
| 28 | elsni 4596 | . . . . . . 7 ⊢ (𝑐 ∈ {∅} → 𝑐 = ∅) | |
| 29 | 27, 28 | syl 17 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → 𝑐 = ∅) |
| 30 | 29 | ad4ant13 751 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) ∧ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) → 𝑐 = ∅) |
| 31 | 11, 22, 24, 30 | rabeqsnd 4623 | . . . 4 ⊢ ((𝜑 ∧ 𝑀 = 0) → {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀} = {∅}) |
| 32 | 31 | eqcomd 2735 | . . 3 ⊢ ((𝜑 ∧ 𝑀 = 0) → {∅} = {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
| 33 | 9 | a1i 11 | . . . . . . . 8 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 0) |
| 34 | simplr 768 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → ¬ 𝑀 = 0) | |
| 35 | 34 | neqned 2932 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → 𝑀 ≠ 0) |
| 36 | 35 | necomd 2980 | . . . . . . . 8 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → 0 ≠ 𝑀) |
| 37 | 33, 36 | eqnetrd 2992 | . . . . . . 7 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) ≠ 𝑀) |
| 38 | 37 | neneqd 2930 | . . . . . 6 ⊢ (((𝜑 ∧ ¬ 𝑀 = 0) ∧ 𝑐 ∈ (𝐴 ↑m (0..^0))) → ¬ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) |
| 39 | 38 | ralrimiva 3121 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝑀 = 0) → ∀𝑐 ∈ (𝐴 ↑m (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) |
| 40 | rabeq0 4341 | . . . . 5 ⊢ ({𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴 ↑m (0..^0)) ¬ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀) | |
| 41 | 39, 40 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝑀 = 0) → {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀} = ∅) |
| 42 | 41 | eqcomd 2735 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑀 = 0) → ∅ = {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
| 43 | 32, 42 | ifeqda 4515 | . 2 ⊢ (𝜑 → if(𝑀 = 0, {∅}, ∅) = {𝑐 ∈ (𝐴 ↑m (0..^0)) ∣ Σ𝑎 ∈ (0..^0)(𝑐‘𝑎) = 𝑀}) |
| 44 | 5, 43 | eqtr4d 2767 | 1 ⊢ (𝜑 → (𝐴(repr‘0)𝑀) = if(𝑀 = 0, {∅}, ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 ifcif 4478 {csn 4579 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 0cc0 11028 ℕcn 12146 ℕ0cn0 12402 ℤcz 12489 ..^cfzo 13575 Σcsu 15611 reprcrepr 34575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-repr 34576 |
| This theorem is referenced by: breprexp 34600 |
| Copyright terms: Public domain | W3C validator |