Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgexpif Structured version   Visualization version   GIF version

Theorem itgexpif 34583
Description: The basis for the circle method in the form of trigonometric sums. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Assertion
Ref Expression
itgexpif (𝑁 ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, 1, 0))
Distinct variable group:   𝑥,𝑁

Proof of Theorem itgexpif
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . . . . . . . . . 11 (𝑁 = 0 → (𝑁 · 𝑥) = (0 · 𝑥))
21oveq2d 7464 . . . . . . . . . 10 (𝑁 = 0 → ((i · (2 · π)) · (𝑁 · 𝑥)) = ((i · (2 · π)) · (0 · 𝑥)))
32fveq2d 6924 . . . . . . . . 9 (𝑁 = 0 → (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = (exp‘((i · (2 · π)) · (0 · 𝑥))))
4 ioossre 13468 . . . . . . . . . . . . . . . 16 (0(,)1) ⊆ ℝ
5 ax-resscn 11241 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
64, 5sstri 4018 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ ℂ
76sseli 4004 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)1) → 𝑥 ∈ ℂ)
87mul02d 11488 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)1) → (0 · 𝑥) = 0)
98oveq2d 7464 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)1) → ((i · (2 · π)) · (0 · 𝑥)) = ((i · (2 · π)) · 0))
10 ax-icn 11243 . . . . . . . . . . . . . 14 i ∈ ℂ
11 2cn 12368 . . . . . . . . . . . . . . 15 2 ∈ ℂ
12 picn 26519 . . . . . . . . . . . . . . 15 π ∈ ℂ
1311, 12mulcli 11297 . . . . . . . . . . . . . 14 (2 · π) ∈ ℂ
1410, 13mulcli 11297 . . . . . . . . . . . . 13 (i · (2 · π)) ∈ ℂ
1514mul01i 11480 . . . . . . . . . . . 12 ((i · (2 · π)) · 0) = 0
169, 15eqtrdi 2796 . . . . . . . . . . 11 (𝑥 ∈ (0(,)1) → ((i · (2 · π)) · (0 · 𝑥)) = 0)
1716fveq2d 6924 . . . . . . . . . 10 (𝑥 ∈ (0(,)1) → (exp‘((i · (2 · π)) · (0 · 𝑥))) = (exp‘0))
18 ef0 16139 . . . . . . . . . 10 (exp‘0) = 1
1917, 18eqtrdi 2796 . . . . . . . . 9 (𝑥 ∈ (0(,)1) → (exp‘((i · (2 · π)) · (0 · 𝑥))) = 1)
203, 19sylan9eq 2800 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1)
2120ralrimiva 3152 . . . . . . 7 (𝑁 = 0 → ∀𝑥 ∈ (0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1)
22 itgeq2 25833 . . . . . . 7 (∀𝑥 ∈ (0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = ∫(0(,)1)1 d𝑥)
2321, 22syl 17 . . . . . 6 (𝑁 = 0 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = ∫(0(,)1)1 d𝑥)
24 ioombl 25619 . . . . . . . 8 (0(,)1) ∈ dom vol
25 0re 11292 . . . . . . . . 9 0 ∈ ℝ
26 1re 11290 . . . . . . . . 9 1 ∈ ℝ
27 ioovolcl 25624 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (vol‘(0(,)1)) ∈ ℝ)
2825, 26, 27mp2an 691 . . . . . . . 8 (vol‘(0(,)1)) ∈ ℝ
29 ax-1cn 11242 . . . . . . . 8 1 ∈ ℂ
30 itgconst 25874 . . . . . . . 8 (((0(,)1) ∈ dom vol ∧ (vol‘(0(,)1)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)1)1 d𝑥 = (1 · (vol‘(0(,)1))))
3124, 28, 29, 30mp3an 1461 . . . . . . 7 ∫(0(,)1)1 d𝑥 = (1 · (vol‘(0(,)1)))
32 0le1 11813 . . . . . . . . . 10 0 ≤ 1
33 volioo 25623 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol‘(0(,)1)) = (1 − 0))
3425, 26, 32, 33mp3an 1461 . . . . . . . . 9 (vol‘(0(,)1)) = (1 − 0)
3529subid1i 11608 . . . . . . . . 9 (1 − 0) = 1
3634, 35eqtri 2768 . . . . . . . 8 (vol‘(0(,)1)) = 1
3736oveq2i 7459 . . . . . . 7 (1 · (vol‘(0(,)1))) = (1 · 1)
3829mulridi 11294 . . . . . . 7 (1 · 1) = 1
3931, 37, 383eqtri 2772 . . . . . 6 ∫(0(,)1)1 d𝑥 = 1
4023, 39eqtrdi 2796 . . . . 5 (𝑁 = 0 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 1)
4140adantl 481 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 1)
4241eqcomd 2746 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → 1 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
43 ioomax 13482 . . . . . . 7 (-∞(,)+∞) = ℝ
4443eqcomi 2749 . . . . . 6 ℝ = (-∞(,)+∞)
45 0red 11293 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ∈ ℝ)
46 1red 11291 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 1 ∈ ℝ)
4732a1i 11 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ≤ 1)
485a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℝ ⊆ ℂ)
4948sselda 4008 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
5010a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → i ∈ ℂ)
51 2cnd 12371 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 2 ∈ ℂ)
5212a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → π ∈ ℂ)
5351, 52mulcld 11310 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (2 · π) ∈ ℂ)
5450, 53mulcld 11310 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (i · (2 · π)) ∈ ℂ)
55 simpl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
5655zcnd 12748 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℂ)
5754, 56mulcld 11310 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
5857adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
59 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
6058, 59mulcld 11310 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → (((i · (2 · π)) · 𝑁) · 𝑦) ∈ ℂ)
6160efcld 16131 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) ∈ ℂ)
6249, 61syldan 590 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) ∈ ℂ)
6357adantr 480 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
64 ine0 11725 . . . . . . . . . . . 12 i ≠ 0
65 2ne0 12397 . . . . . . . . . . . . 13 2 ≠ 0
66 pipos 26520 . . . . . . . . . . . . . 14 0 < π
6725, 66gtneii 11402 . . . . . . . . . . . . 13 π ≠ 0
6811, 12, 65, 67mulne0i 11933 . . . . . . . . . . . 12 (2 · π) ≠ 0
6910, 13, 64, 68mulne0i 11933 . . . . . . . . . . 11 (i · (2 · π)) ≠ 0
7069a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (i · (2 · π)) ≠ 0)
71 simpr 484 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0)
7271neqned 2953 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
7354, 56, 70, 72mulne0d 11942 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((i · (2 · π)) · 𝑁) ≠ 0)
7473adantr 480 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ≠ 0)
7562, 63, 74divcld 12070 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
7675fmpttd 7149 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))):ℝ⟶ℂ)
77 reelprrecn 11276 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
7877a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℝ ∈ {ℝ, ℂ})
79 cnelprrecn 11277 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
8079a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℂ ∈ {ℝ, ℂ})
8163, 49mulcld 11310 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑦) ∈ ℂ)
82 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
8382efcld 16131 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → (exp‘𝑧) ∈ ℂ)
8457adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
8573adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ≠ 0)
8683, 84, 85divcld 12070 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
8726a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
8878dvmptid 26015 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
8978, 49, 87, 88, 57dvmptcmul 26022 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 1)))
9063mulridd 11307 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 1) = ((i · (2 · π)) · 𝑁))
9190mpteq2dva 5266 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 1)) = (𝑦 ∈ ℝ ↦ ((i · (2 · π)) · 𝑁)))
9289, 91eqtrd 2780 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑦 ∈ ℝ ↦ ((i · (2 · π)) · 𝑁)))
93 dvef 26038 . . . . . . . . . . 11 (ℂ D exp) = exp
94 eff 16129 . . . . . . . . . . . . . 14 exp:ℂ⟶ℂ
9594a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp:ℂ⟶ℂ)
9695feqmptd 6990 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
9796oveq2d 7464 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D exp) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘𝑧))))
9893, 97, 963eqtr3a 2804 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D (𝑧 ∈ ℂ ↦ (exp‘𝑧))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
9980, 83, 83, 98, 57, 73dvmptdivc 26023 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D (𝑧 ∈ ℂ ↦ ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑧) / ((i · (2 · π)) · 𝑁))))
100 fveq2 6920 . . . . . . . . . 10 (𝑧 = (((i · (2 · π)) · 𝑁) · 𝑦) → (exp‘𝑧) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))
101100oveq1d 7463 . . . . . . . . 9 (𝑧 = (((i · (2 · π)) · 𝑁) · 𝑦) → ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))
10278, 80, 81, 63, 86, 86, 92, 99, 101, 101dvmptco 26030 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁))))
10362, 63, 74divcan1d 12071 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁)) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))
104103mpteq2dva 5266 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
105102, 104eqtrd 2780 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
106 efcn 26505 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
107106a1i 11 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp ∈ (ℂ–cn→ℂ))
108 resmpt 6066 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)))
1095, 108mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)))
110 eqid 2740 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) = (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))
111110mulc1cncf 24950 . . . . . . . . . . 11 (((i · (2 · π)) · 𝑁) ∈ ℂ → (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ))
11257, 111syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ))
113 rescncf 24942 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ)))
1145, 113mp1i 13 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ)))
115112, 114mpd 15 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ))
116109, 115eqeltrrd 2845 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℝ–cn→ℂ))
117107, 116cncfmpt1f 24959 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) ∈ (ℝ–cn→ℂ))
118105, 117eqeltrd 2844 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) ∈ (ℝ–cn→ℂ))
11944, 45, 46, 47, 76, 118ftc2re 34575 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)))
1204sseli 4004 . . . . . . . 8 (𝑥 ∈ (0(,)1) → 𝑥 ∈ ℝ)
121105adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
122121fveq1d 6922 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥))
123 oveq2 7456 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 𝑥))
124123fveq2d 6924 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
125124cbvmptv 5279 . . . . . . . . . . . 12 (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑥 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
126125a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑥 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑥))))
12757adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
12848sselda 4008 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
129127, 128mulcld 11310 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑥) ∈ ℂ)
130129efcld 16131 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)) ∈ ℂ)
131126, 130fvmpt2d 7042 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
13214a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (i · (2 · π)) ∈ ℂ)
13356adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℂ)
134132, 133, 128mulassd 11313 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑥) = ((i · (2 · π)) · (𝑁 · 𝑥)))
135134fveq2d 6924 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
136131, 135eqtrd 2780 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
137122, 136eqtrd 2780 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
138120, 137sylan2 592 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ (0(,)1)) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
139138ralrimiva 3152 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∀𝑥 ∈ (0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
140 itgeq2 25833 . . . . . 6 (∀𝑥 ∈ (0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
141139, 140syl 17 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
142 eqidd 2741 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))) = (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))
143 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → 𝑦 = 1)
144143oveq2d 7464 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 1))
145144fveq2d 6924 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 1)))
146145oveq1d 7463 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)))
14729a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 1 ∈ ℂ)
14857, 147mulcld 11310 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 1) ∈ ℂ)
149148efcld 16131 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) ∈ ℂ)
150149, 57, 73divcld 12070 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
151142, 146, 46, 150fvmptd 7036 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) = ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)))
15257mulridd 11307 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 1) = ((i · (2 · π)) · 𝑁))
153152fveq2d 6924 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) = (exp‘((i · (2 · π)) · 𝑁)))
154 ef2kpi 26538 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (exp‘((i · (2 · π)) · 𝑁)) = 1)
15555, 154syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘((i · (2 · π)) · 𝑁)) = 1)
156153, 155eqtrd 2780 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) = 1)
157156oveq1d 7463 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)) = (1 / ((i · (2 · π)) · 𝑁)))
158151, 157eqtrd 2780 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) = (1 / ((i · (2 · π)) · 𝑁)))
159 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → 𝑦 = 0)
160159oveq2d 7464 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 0))
161160fveq2d 6924 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 0)))
162161oveq1d 7463 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)))
1635, 45sselid 4006 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ∈ ℂ)
16457, 163mulcld 11310 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 0) ∈ ℂ)
165164efcld 16131 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) ∈ ℂ)
166165, 57, 73divcld 12070 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
167142, 162, 45, 166fvmptd 7036 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0) = ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)))
16857mul01d 11489 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 0) = 0)
169168fveq2d 6924 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) = (exp‘0))
170169, 18eqtrdi 2796 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) = 1)
171170oveq1d 7463 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)) = (1 / ((i · (2 · π)) · 𝑁)))
172167, 171eqtrd 2780 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0) = (1 / ((i · (2 · π)) · 𝑁)))
173158, 172oveq12d 7466 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)) = ((1 / ((i · (2 · π)) · 𝑁)) − (1 / ((i · (2 · π)) · 𝑁))))
174157, 150eqeltrrd 2845 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (1 / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
175174subidd 11635 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((1 / ((i · (2 · π)) · 𝑁)) − (1 / ((i · (2 · π)) · 𝑁))) = 0)
176173, 175eqtrd 2780 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)) = 0)
177119, 141, 1763eqtr3d 2788 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 0)
178177eqcomd 2746 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
17942, 178ifeqda 4584 . 2 (𝑁 ∈ ℤ → if(𝑁 = 0, 1, 0) = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
180179eqcomd 2746 1 (𝑁 ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  ifcif 4548  {cpr 4650   class class class wbr 5166  cmpt 5249  dom cdm 5700  cres 5702  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   · cmul 11189  +∞cpnf 11321  -∞cmnf 11322  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  cz 12639  (,)cioo 13407  expce 16109  πcpi 16114  cnccncf 24921  volcvol 25517  citg 25672   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-symdif 4272  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724  df-limc 25921  df-dv 25922
This theorem is referenced by:  circlemeth  34617
  Copyright terms: Public domain W3C validator