Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgexpif Structured version   Visualization version   GIF version

Theorem itgexpif 32486
Description: The basis for the circle method in the form of trigonometric sums. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Assertion
Ref Expression
itgexpif (𝑁 ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, 1, 0))
Distinct variable group:   𝑥,𝑁

Proof of Theorem itgexpif
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . . . . . . . . . 11 (𝑁 = 0 → (𝑁 · 𝑥) = (0 · 𝑥))
21oveq2d 7271 . . . . . . . . . 10 (𝑁 = 0 → ((i · (2 · π)) · (𝑁 · 𝑥)) = ((i · (2 · π)) · (0 · 𝑥)))
32fveq2d 6760 . . . . . . . . 9 (𝑁 = 0 → (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = (exp‘((i · (2 · π)) · (0 · 𝑥))))
4 ioossre 13069 . . . . . . . . . . . . . . . 16 (0(,)1) ⊆ ℝ
5 ax-resscn 10859 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
64, 5sstri 3926 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ ℂ
76sseli 3913 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)1) → 𝑥 ∈ ℂ)
87mul02d 11103 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)1) → (0 · 𝑥) = 0)
98oveq2d 7271 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)1) → ((i · (2 · π)) · (0 · 𝑥)) = ((i · (2 · π)) · 0))
10 ax-icn 10861 . . . . . . . . . . . . . 14 i ∈ ℂ
11 2cn 11978 . . . . . . . . . . . . . . 15 2 ∈ ℂ
12 picn 25521 . . . . . . . . . . . . . . 15 π ∈ ℂ
1311, 12mulcli 10913 . . . . . . . . . . . . . 14 (2 · π) ∈ ℂ
1410, 13mulcli 10913 . . . . . . . . . . . . 13 (i · (2 · π)) ∈ ℂ
1514mul01i 11095 . . . . . . . . . . . 12 ((i · (2 · π)) · 0) = 0
169, 15eqtrdi 2795 . . . . . . . . . . 11 (𝑥 ∈ (0(,)1) → ((i · (2 · π)) · (0 · 𝑥)) = 0)
1716fveq2d 6760 . . . . . . . . . 10 (𝑥 ∈ (0(,)1) → (exp‘((i · (2 · π)) · (0 · 𝑥))) = (exp‘0))
18 ef0 15728 . . . . . . . . . 10 (exp‘0) = 1
1917, 18eqtrdi 2795 . . . . . . . . 9 (𝑥 ∈ (0(,)1) → (exp‘((i · (2 · π)) · (0 · 𝑥))) = 1)
203, 19sylan9eq 2799 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1)
2120ralrimiva 3107 . . . . . . 7 (𝑁 = 0 → ∀𝑥 ∈ (0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1)
22 itgeq2 24847 . . . . . . 7 (∀𝑥 ∈ (0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = ∫(0(,)1)1 d𝑥)
2321, 22syl 17 . . . . . 6 (𝑁 = 0 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = ∫(0(,)1)1 d𝑥)
24 ioombl 24634 . . . . . . . 8 (0(,)1) ∈ dom vol
25 0re 10908 . . . . . . . . 9 0 ∈ ℝ
26 1re 10906 . . . . . . . . 9 1 ∈ ℝ
27 ioovolcl 24639 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (vol‘(0(,)1)) ∈ ℝ)
2825, 26, 27mp2an 688 . . . . . . . 8 (vol‘(0(,)1)) ∈ ℝ
29 ax-1cn 10860 . . . . . . . 8 1 ∈ ℂ
30 itgconst 24888 . . . . . . . 8 (((0(,)1) ∈ dom vol ∧ (vol‘(0(,)1)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)1)1 d𝑥 = (1 · (vol‘(0(,)1))))
3124, 28, 29, 30mp3an 1459 . . . . . . 7 ∫(0(,)1)1 d𝑥 = (1 · (vol‘(0(,)1)))
32 0le1 11428 . . . . . . . . . 10 0 ≤ 1
33 volioo 24638 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol‘(0(,)1)) = (1 − 0))
3425, 26, 32, 33mp3an 1459 . . . . . . . . 9 (vol‘(0(,)1)) = (1 − 0)
3529subid1i 11223 . . . . . . . . 9 (1 − 0) = 1
3634, 35eqtri 2766 . . . . . . . 8 (vol‘(0(,)1)) = 1
3736oveq2i 7266 . . . . . . 7 (1 · (vol‘(0(,)1))) = (1 · 1)
3829mulid1i 10910 . . . . . . 7 (1 · 1) = 1
3931, 37, 383eqtri 2770 . . . . . 6 ∫(0(,)1)1 d𝑥 = 1
4023, 39eqtrdi 2795 . . . . 5 (𝑁 = 0 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 1)
4140adantl 481 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 1)
4241eqcomd 2744 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → 1 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
43 ioomax 13083 . . . . . . 7 (-∞(,)+∞) = ℝ
4443eqcomi 2747 . . . . . 6 ℝ = (-∞(,)+∞)
45 0red 10909 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ∈ ℝ)
46 1red 10907 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 1 ∈ ℝ)
4732a1i 11 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ≤ 1)
485a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℝ ⊆ ℂ)
4948sselda 3917 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
5010a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → i ∈ ℂ)
51 2cnd 11981 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 2 ∈ ℂ)
5212a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → π ∈ ℂ)
5351, 52mulcld 10926 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (2 · π) ∈ ℂ)
5450, 53mulcld 10926 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (i · (2 · π)) ∈ ℂ)
55 simpl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
5655zcnd 12356 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℂ)
5754, 56mulcld 10926 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
5857adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
59 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
6058, 59mulcld 10926 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → (((i · (2 · π)) · 𝑁) · 𝑦) ∈ ℂ)
6160efcld 32471 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) ∈ ℂ)
6249, 61syldan 590 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) ∈ ℂ)
6357adantr 480 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
64 ine0 11340 . . . . . . . . . . . 12 i ≠ 0
65 2ne0 12007 . . . . . . . . . . . . 13 2 ≠ 0
66 pipos 25522 . . . . . . . . . . . . . 14 0 < π
6725, 66gtneii 11017 . . . . . . . . . . . . 13 π ≠ 0
6811, 12, 65, 67mulne0i 11548 . . . . . . . . . . . 12 (2 · π) ≠ 0
6910, 13, 64, 68mulne0i 11548 . . . . . . . . . . 11 (i · (2 · π)) ≠ 0
7069a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (i · (2 · π)) ≠ 0)
71 simpr 484 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0)
7271neqned 2949 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
7354, 56, 70, 72mulne0d 11557 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((i · (2 · π)) · 𝑁) ≠ 0)
7473adantr 480 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ≠ 0)
7562, 63, 74divcld 11681 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
7675fmpttd 6971 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))):ℝ⟶ℂ)
77 reelprrecn 10894 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
7877a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℝ ∈ {ℝ, ℂ})
79 cnelprrecn 10895 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
8079a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℂ ∈ {ℝ, ℂ})
8163, 49mulcld 10926 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑦) ∈ ℂ)
82 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
8382efcld 32471 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → (exp‘𝑧) ∈ ℂ)
8457adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
8573adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ≠ 0)
8683, 84, 85divcld 11681 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
8726a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
8878dvmptid 25026 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
8978, 49, 87, 88, 57dvmptcmul 25033 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 1)))
9063mulid1d 10923 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 1) = ((i · (2 · π)) · 𝑁))
9190mpteq2dva 5170 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 1)) = (𝑦 ∈ ℝ ↦ ((i · (2 · π)) · 𝑁)))
9289, 91eqtrd 2778 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑦 ∈ ℝ ↦ ((i · (2 · π)) · 𝑁)))
93 dvef 25049 . . . . . . . . . . 11 (ℂ D exp) = exp
94 eff 15719 . . . . . . . . . . . . . 14 exp:ℂ⟶ℂ
9594a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp:ℂ⟶ℂ)
9695feqmptd 6819 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
9796oveq2d 7271 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D exp) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘𝑧))))
9893, 97, 963eqtr3a 2803 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D (𝑧 ∈ ℂ ↦ (exp‘𝑧))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
9980, 83, 83, 98, 57, 73dvmptdivc 25034 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D (𝑧 ∈ ℂ ↦ ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑧) / ((i · (2 · π)) · 𝑁))))
100 fveq2 6756 . . . . . . . . . 10 (𝑧 = (((i · (2 · π)) · 𝑁) · 𝑦) → (exp‘𝑧) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))
101100oveq1d 7270 . . . . . . . . 9 (𝑧 = (((i · (2 · π)) · 𝑁) · 𝑦) → ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))
10278, 80, 81, 63, 86, 86, 92, 99, 101, 101dvmptco 25041 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁))))
10362, 63, 74divcan1d 11682 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁)) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))
104103mpteq2dva 5170 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
105102, 104eqtrd 2778 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
106 efcn 25507 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
107106a1i 11 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp ∈ (ℂ–cn→ℂ))
108 resmpt 5934 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)))
1095, 108mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)))
110 eqid 2738 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) = (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))
111110mulc1cncf 23974 . . . . . . . . . . 11 (((i · (2 · π)) · 𝑁) ∈ ℂ → (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ))
11257, 111syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ))
113 rescncf 23966 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ)))
1145, 113mp1i 13 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ)))
115112, 114mpd 15 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ))
116109, 115eqeltrrd 2840 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℝ–cn→ℂ))
117107, 116cncfmpt1f 23983 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) ∈ (ℝ–cn→ℂ))
118105, 117eqeltrd 2839 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) ∈ (ℝ–cn→ℂ))
11944, 45, 46, 47, 76, 118ftc2re 32478 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)))
1204sseli 3913 . . . . . . . 8 (𝑥 ∈ (0(,)1) → 𝑥 ∈ ℝ)
121105adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
122121fveq1d 6758 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥))
123 oveq2 7263 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 𝑥))
124123fveq2d 6760 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
125124cbvmptv 5183 . . . . . . . . . . . 12 (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑥 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
126125a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑥 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑥))))
12757adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
12848sselda 3917 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
129127, 128mulcld 10926 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑥) ∈ ℂ)
130129efcld 32471 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)) ∈ ℂ)
131126, 130fvmpt2d 6870 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
13214a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (i · (2 · π)) ∈ ℂ)
13356adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℂ)
134132, 133, 128mulassd 10929 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑥) = ((i · (2 · π)) · (𝑁 · 𝑥)))
135134fveq2d 6760 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
136131, 135eqtrd 2778 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
137122, 136eqtrd 2778 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
138120, 137sylan2 592 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ (0(,)1)) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
139138ralrimiva 3107 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∀𝑥 ∈ (0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
140 itgeq2 24847 . . . . . 6 (∀𝑥 ∈ (0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
141139, 140syl 17 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
142 eqidd 2739 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))) = (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))
143 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → 𝑦 = 1)
144143oveq2d 7271 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 1))
145144fveq2d 6760 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 1)))
146145oveq1d 7270 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)))
14729a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 1 ∈ ℂ)
14857, 147mulcld 10926 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 1) ∈ ℂ)
149148efcld 32471 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) ∈ ℂ)
150149, 57, 73divcld 11681 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
151142, 146, 46, 150fvmptd 6864 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) = ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)))
15257mulid1d 10923 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 1) = ((i · (2 · π)) · 𝑁))
153152fveq2d 6760 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) = (exp‘((i · (2 · π)) · 𝑁)))
154 ef2kpi 25540 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (exp‘((i · (2 · π)) · 𝑁)) = 1)
15555, 154syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘((i · (2 · π)) · 𝑁)) = 1)
156153, 155eqtrd 2778 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) = 1)
157156oveq1d 7270 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)) = (1 / ((i · (2 · π)) · 𝑁)))
158151, 157eqtrd 2778 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) = (1 / ((i · (2 · π)) · 𝑁)))
159 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → 𝑦 = 0)
160159oveq2d 7271 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 0))
161160fveq2d 6760 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 0)))
162161oveq1d 7270 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)))
1635, 45sselid 3915 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ∈ ℂ)
16457, 163mulcld 10926 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 0) ∈ ℂ)
165164efcld 32471 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) ∈ ℂ)
166165, 57, 73divcld 11681 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
167142, 162, 45, 166fvmptd 6864 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0) = ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)))
16857mul01d 11104 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 0) = 0)
169168fveq2d 6760 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) = (exp‘0))
170169, 18eqtrdi 2795 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) = 1)
171170oveq1d 7270 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)) = (1 / ((i · (2 · π)) · 𝑁)))
172167, 171eqtrd 2778 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0) = (1 / ((i · (2 · π)) · 𝑁)))
173158, 172oveq12d 7273 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)) = ((1 / ((i · (2 · π)) · 𝑁)) − (1 / ((i · (2 · π)) · 𝑁))))
174157, 150eqeltrrd 2840 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (1 / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
175174subidd 11250 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((1 / ((i · (2 · π)) · 𝑁)) − (1 / ((i · (2 · π)) · 𝑁))) = 0)
176173, 175eqtrd 2778 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)) = 0)
177119, 141, 1763eqtr3d 2786 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 0)
178177eqcomd 2744 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
17942, 178ifeqda 4492 . 2 (𝑁 ∈ ℤ → if(𝑁 = 0, 1, 0) = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
180179eqcomd 2744 1 (𝑁 ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883  ifcif 4456  {cpr 4560   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803  ici 10804   · cmul 10807  +∞cpnf 10937  -∞cmnf 10938  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  cz 12249  (,)cioo 13008  expce 15699  πcpi 15704  cnccncf 23945  volcvol 24532  citg 24687   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935  df-dv 24936
This theorem is referenced by:  circlemeth  32520
  Copyright terms: Public domain W3C validator