Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgexpif Structured version   Visualization version   GIF version

Theorem itgexpif 34621
Description: The basis for the circle method in the form of trigonometric sums. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Assertion
Ref Expression
itgexpif (𝑁 ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, 1, 0))
Distinct variable group:   𝑥,𝑁

Proof of Theorem itgexpif
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7438 . . . . . . . . . . 11 (𝑁 = 0 → (𝑁 · 𝑥) = (0 · 𝑥))
21oveq2d 7447 . . . . . . . . . 10 (𝑁 = 0 → ((i · (2 · π)) · (𝑁 · 𝑥)) = ((i · (2 · π)) · (0 · 𝑥)))
32fveq2d 6910 . . . . . . . . 9 (𝑁 = 0 → (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = (exp‘((i · (2 · π)) · (0 · 𝑥))))
4 ioossre 13448 . . . . . . . . . . . . . . . 16 (0(,)1) ⊆ ℝ
5 ax-resscn 11212 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
64, 5sstri 3993 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ ℂ
76sseli 3979 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)1) → 𝑥 ∈ ℂ)
87mul02d 11459 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)1) → (0 · 𝑥) = 0)
98oveq2d 7447 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)1) → ((i · (2 · π)) · (0 · 𝑥)) = ((i · (2 · π)) · 0))
10 ax-icn 11214 . . . . . . . . . . . . . 14 i ∈ ℂ
11 2cn 12341 . . . . . . . . . . . . . . 15 2 ∈ ℂ
12 picn 26501 . . . . . . . . . . . . . . 15 π ∈ ℂ
1311, 12mulcli 11268 . . . . . . . . . . . . . 14 (2 · π) ∈ ℂ
1410, 13mulcli 11268 . . . . . . . . . . . . 13 (i · (2 · π)) ∈ ℂ
1514mul01i 11451 . . . . . . . . . . . 12 ((i · (2 · π)) · 0) = 0
169, 15eqtrdi 2793 . . . . . . . . . . 11 (𝑥 ∈ (0(,)1) → ((i · (2 · π)) · (0 · 𝑥)) = 0)
1716fveq2d 6910 . . . . . . . . . 10 (𝑥 ∈ (0(,)1) → (exp‘((i · (2 · π)) · (0 · 𝑥))) = (exp‘0))
18 ef0 16127 . . . . . . . . . 10 (exp‘0) = 1
1917, 18eqtrdi 2793 . . . . . . . . 9 (𝑥 ∈ (0(,)1) → (exp‘((i · (2 · π)) · (0 · 𝑥))) = 1)
203, 19sylan9eq 2797 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1)
2120ralrimiva 3146 . . . . . . 7 (𝑁 = 0 → ∀𝑥 ∈ (0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1)
22 itgeq2 25813 . . . . . . 7 (∀𝑥 ∈ (0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = ∫(0(,)1)1 d𝑥)
2321, 22syl 17 . . . . . 6 (𝑁 = 0 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = ∫(0(,)1)1 d𝑥)
24 ioombl 25600 . . . . . . . 8 (0(,)1) ∈ dom vol
25 0re 11263 . . . . . . . . 9 0 ∈ ℝ
26 1re 11261 . . . . . . . . 9 1 ∈ ℝ
27 ioovolcl 25605 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (vol‘(0(,)1)) ∈ ℝ)
2825, 26, 27mp2an 692 . . . . . . . 8 (vol‘(0(,)1)) ∈ ℝ
29 ax-1cn 11213 . . . . . . . 8 1 ∈ ℂ
30 itgconst 25854 . . . . . . . 8 (((0(,)1) ∈ dom vol ∧ (vol‘(0(,)1)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)1)1 d𝑥 = (1 · (vol‘(0(,)1))))
3124, 28, 29, 30mp3an 1463 . . . . . . 7 ∫(0(,)1)1 d𝑥 = (1 · (vol‘(0(,)1)))
32 0le1 11786 . . . . . . . . . 10 0 ≤ 1
33 volioo 25604 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol‘(0(,)1)) = (1 − 0))
3425, 26, 32, 33mp3an 1463 . . . . . . . . 9 (vol‘(0(,)1)) = (1 − 0)
3529subid1i 11581 . . . . . . . . 9 (1 − 0) = 1
3634, 35eqtri 2765 . . . . . . . 8 (vol‘(0(,)1)) = 1
3736oveq2i 7442 . . . . . . 7 (1 · (vol‘(0(,)1))) = (1 · 1)
3829mulridi 11265 . . . . . . 7 (1 · 1) = 1
3931, 37, 383eqtri 2769 . . . . . 6 ∫(0(,)1)1 d𝑥 = 1
4023, 39eqtrdi 2793 . . . . 5 (𝑁 = 0 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 1)
4140adantl 481 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 1)
4241eqcomd 2743 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → 1 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
43 ioomax 13462 . . . . . . 7 (-∞(,)+∞) = ℝ
4443eqcomi 2746 . . . . . 6 ℝ = (-∞(,)+∞)
45 0red 11264 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ∈ ℝ)
46 1red 11262 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 1 ∈ ℝ)
4732a1i 11 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ≤ 1)
485a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℝ ⊆ ℂ)
4948sselda 3983 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
5010a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → i ∈ ℂ)
51 2cnd 12344 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 2 ∈ ℂ)
5212a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → π ∈ ℂ)
5351, 52mulcld 11281 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (2 · π) ∈ ℂ)
5450, 53mulcld 11281 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (i · (2 · π)) ∈ ℂ)
55 simpl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
5655zcnd 12723 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℂ)
5754, 56mulcld 11281 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
5857adantr 480 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
59 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
6058, 59mulcld 11281 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → (((i · (2 · π)) · 𝑁) · 𝑦) ∈ ℂ)
6160efcld 16119 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) ∈ ℂ)
6249, 61syldan 591 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) ∈ ℂ)
6357adantr 480 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
64 ine0 11698 . . . . . . . . . . . 12 i ≠ 0
65 2ne0 12370 . . . . . . . . . . . . 13 2 ≠ 0
66 pipos 26502 . . . . . . . . . . . . . 14 0 < π
6725, 66gtneii 11373 . . . . . . . . . . . . 13 π ≠ 0
6811, 12, 65, 67mulne0i 11906 . . . . . . . . . . . 12 (2 · π) ≠ 0
6910, 13, 64, 68mulne0i 11906 . . . . . . . . . . 11 (i · (2 · π)) ≠ 0
7069a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (i · (2 · π)) ≠ 0)
71 simpr 484 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0)
7271neqned 2947 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
7354, 56, 70, 72mulne0d 11915 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((i · (2 · π)) · 𝑁) ≠ 0)
7473adantr 480 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ≠ 0)
7562, 63, 74divcld 12043 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
7675fmpttd 7135 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))):ℝ⟶ℂ)
77 reelprrecn 11247 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
7877a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℝ ∈ {ℝ, ℂ})
79 cnelprrecn 11248 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
8079a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℂ ∈ {ℝ, ℂ})
8163, 49mulcld 11281 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑦) ∈ ℂ)
82 simpr 484 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
8382efcld 16119 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → (exp‘𝑧) ∈ ℂ)
8457adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
8573adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ≠ 0)
8683, 84, 85divcld 12043 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
8726a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
8878dvmptid 25995 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
8978, 49, 87, 88, 57dvmptcmul 26002 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 1)))
9063mulridd 11278 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 1) = ((i · (2 · π)) · 𝑁))
9190mpteq2dva 5242 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 1)) = (𝑦 ∈ ℝ ↦ ((i · (2 · π)) · 𝑁)))
9289, 91eqtrd 2777 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑦 ∈ ℝ ↦ ((i · (2 · π)) · 𝑁)))
93 dvef 26018 . . . . . . . . . . 11 (ℂ D exp) = exp
94 eff 16117 . . . . . . . . . . . . . 14 exp:ℂ⟶ℂ
9594a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp:ℂ⟶ℂ)
9695feqmptd 6977 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
9796oveq2d 7447 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D exp) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘𝑧))))
9893, 97, 963eqtr3a 2801 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D (𝑧 ∈ ℂ ↦ (exp‘𝑧))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
9980, 83, 83, 98, 57, 73dvmptdivc 26003 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D (𝑧 ∈ ℂ ↦ ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑧) / ((i · (2 · π)) · 𝑁))))
100 fveq2 6906 . . . . . . . . . 10 (𝑧 = (((i · (2 · π)) · 𝑁) · 𝑦) → (exp‘𝑧) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))
101100oveq1d 7446 . . . . . . . . 9 (𝑧 = (((i · (2 · π)) · 𝑁) · 𝑦) → ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))
10278, 80, 81, 63, 86, 86, 92, 99, 101, 101dvmptco 26010 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁))))
10362, 63, 74divcan1d 12044 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁)) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))
104103mpteq2dva 5242 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
105102, 104eqtrd 2777 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
106 efcn 26487 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
107106a1i 11 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp ∈ (ℂ–cn→ℂ))
108 resmpt 6055 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)))
1095, 108mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)))
110 eqid 2737 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) = (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))
111110mulc1cncf 24931 . . . . . . . . . . 11 (((i · (2 · π)) · 𝑁) ∈ ℂ → (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ))
11257, 111syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ))
113 rescncf 24923 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ)))
1145, 113mp1i 13 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ)))
115112, 114mpd 15 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ))
116109, 115eqeltrrd 2842 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℝ–cn→ℂ))
117107, 116cncfmpt1f 24940 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) ∈ (ℝ–cn→ℂ))
118105, 117eqeltrd 2841 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) ∈ (ℝ–cn→ℂ))
11944, 45, 46, 47, 76, 118ftc2re 34613 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)))
1204sseli 3979 . . . . . . . 8 (𝑥 ∈ (0(,)1) → 𝑥 ∈ ℝ)
121105adantr 480 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
122121fveq1d 6908 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥))
123 oveq2 7439 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 𝑥))
124123fveq2d 6910 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
125124cbvmptv 5255 . . . . . . . . . . . 12 (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑥 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
126125a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑥 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑥))))
12757adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
12848sselda 3983 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
129127, 128mulcld 11281 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑥) ∈ ℂ)
130129efcld 16119 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)) ∈ ℂ)
131126, 130fvmpt2d 7029 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
13214a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (i · (2 · π)) ∈ ℂ)
13356adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℂ)
134132, 133, 128mulassd 11284 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑥) = ((i · (2 · π)) · (𝑁 · 𝑥)))
135134fveq2d 6910 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
136131, 135eqtrd 2777 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
137122, 136eqtrd 2777 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
138120, 137sylan2 593 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ (0(,)1)) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
139138ralrimiva 3146 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∀𝑥 ∈ (0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
140 itgeq2 25813 . . . . . 6 (∀𝑥 ∈ (0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
141139, 140syl 17 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
142 eqidd 2738 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))) = (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))
143 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → 𝑦 = 1)
144143oveq2d 7447 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 1))
145144fveq2d 6910 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 1)))
146145oveq1d 7446 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)))
14729a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 1 ∈ ℂ)
14857, 147mulcld 11281 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 1) ∈ ℂ)
149148efcld 16119 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) ∈ ℂ)
150149, 57, 73divcld 12043 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
151142, 146, 46, 150fvmptd 7023 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) = ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)))
15257mulridd 11278 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 1) = ((i · (2 · π)) · 𝑁))
153152fveq2d 6910 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) = (exp‘((i · (2 · π)) · 𝑁)))
154 ef2kpi 26520 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (exp‘((i · (2 · π)) · 𝑁)) = 1)
15555, 154syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘((i · (2 · π)) · 𝑁)) = 1)
156153, 155eqtrd 2777 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) = 1)
157156oveq1d 7446 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)) = (1 / ((i · (2 · π)) · 𝑁)))
158151, 157eqtrd 2777 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) = (1 / ((i · (2 · π)) · 𝑁)))
159 simpr 484 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → 𝑦 = 0)
160159oveq2d 7447 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 0))
161160fveq2d 6910 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 0)))
162161oveq1d 7446 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)))
1635, 45sselid 3981 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ∈ ℂ)
16457, 163mulcld 11281 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 0) ∈ ℂ)
165164efcld 16119 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) ∈ ℂ)
166165, 57, 73divcld 12043 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
167142, 162, 45, 166fvmptd 7023 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0) = ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)))
16857mul01d 11460 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 0) = 0)
169168fveq2d 6910 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) = (exp‘0))
170169, 18eqtrdi 2793 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) = 1)
171170oveq1d 7446 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)) = (1 / ((i · (2 · π)) · 𝑁)))
172167, 171eqtrd 2777 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0) = (1 / ((i · (2 · π)) · 𝑁)))
173158, 172oveq12d 7449 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)) = ((1 / ((i · (2 · π)) · 𝑁)) − (1 / ((i · (2 · π)) · 𝑁))))
174157, 150eqeltrrd 2842 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (1 / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
175174subidd 11608 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((1 / ((i · (2 · π)) · 𝑁)) − (1 / ((i · (2 · π)) · 𝑁))) = 0)
176173, 175eqtrd 2777 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)) = 0)
177119, 141, 1763eqtr3d 2785 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 0)
178177eqcomd 2743 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
17942, 178ifeqda 4562 . 2 (𝑁 ∈ ℤ → if(𝑁 = 0, 1, 0) = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
180179eqcomd 2743 1 (𝑁 ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wss 3951  ifcif 4525  {cpr 4628   class class class wbr 5143  cmpt 5225  dom cdm 5685  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  ici 11157   · cmul 11160  +∞cpnf 11292  -∞cmnf 11293  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  cz 12613  (,)cioo 13387  expce 16097  πcpi 16102  cnccncf 24902  volcvol 25498  citg 25653   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-limc 25901  df-dv 25902
This theorem is referenced by:  circlemeth  34655
  Copyright terms: Public domain W3C validator