Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgexpif Structured version   Visualization version   GIF version

Theorem itgexpif 32586
Description: The basis for the circle method in the form of trigonometric sums. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 2-Dec-2021.)
Assertion
Ref Expression
itgexpif (𝑁 ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, 1, 0))
Distinct variable group:   𝑥,𝑁

Proof of Theorem itgexpif
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . . . . . . . . . 11 (𝑁 = 0 → (𝑁 · 𝑥) = (0 · 𝑥))
21oveq2d 7291 . . . . . . . . . 10 (𝑁 = 0 → ((i · (2 · π)) · (𝑁 · 𝑥)) = ((i · (2 · π)) · (0 · 𝑥)))
32fveq2d 6778 . . . . . . . . 9 (𝑁 = 0 → (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = (exp‘((i · (2 · π)) · (0 · 𝑥))))
4 ioossre 13140 . . . . . . . . . . . . . . . 16 (0(,)1) ⊆ ℝ
5 ax-resscn 10928 . . . . . . . . . . . . . . . 16 ℝ ⊆ ℂ
64, 5sstri 3930 . . . . . . . . . . . . . . 15 (0(,)1) ⊆ ℂ
76sseli 3917 . . . . . . . . . . . . . 14 (𝑥 ∈ (0(,)1) → 𝑥 ∈ ℂ)
87mul02d 11173 . . . . . . . . . . . . 13 (𝑥 ∈ (0(,)1) → (0 · 𝑥) = 0)
98oveq2d 7291 . . . . . . . . . . . 12 (𝑥 ∈ (0(,)1) → ((i · (2 · π)) · (0 · 𝑥)) = ((i · (2 · π)) · 0))
10 ax-icn 10930 . . . . . . . . . . . . . 14 i ∈ ℂ
11 2cn 12048 . . . . . . . . . . . . . . 15 2 ∈ ℂ
12 picn 25616 . . . . . . . . . . . . . . 15 π ∈ ℂ
1311, 12mulcli 10982 . . . . . . . . . . . . . 14 (2 · π) ∈ ℂ
1410, 13mulcli 10982 . . . . . . . . . . . . 13 (i · (2 · π)) ∈ ℂ
1514mul01i 11165 . . . . . . . . . . . 12 ((i · (2 · π)) · 0) = 0
169, 15eqtrdi 2794 . . . . . . . . . . 11 (𝑥 ∈ (0(,)1) → ((i · (2 · π)) · (0 · 𝑥)) = 0)
1716fveq2d 6778 . . . . . . . . . 10 (𝑥 ∈ (0(,)1) → (exp‘((i · (2 · π)) · (0 · 𝑥))) = (exp‘0))
18 ef0 15800 . . . . . . . . . 10 (exp‘0) = 1
1917, 18eqtrdi 2794 . . . . . . . . 9 (𝑥 ∈ (0(,)1) → (exp‘((i · (2 · π)) · (0 · 𝑥))) = 1)
203, 19sylan9eq 2798 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑥 ∈ (0(,)1)) → (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1)
2120ralrimiva 3103 . . . . . . 7 (𝑁 = 0 → ∀𝑥 ∈ (0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1)
22 itgeq2 24942 . . . . . . 7 (∀𝑥 ∈ (0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) = 1 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = ∫(0(,)1)1 d𝑥)
2321, 22syl 17 . . . . . 6 (𝑁 = 0 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = ∫(0(,)1)1 d𝑥)
24 ioombl 24729 . . . . . . . 8 (0(,)1) ∈ dom vol
25 0re 10977 . . . . . . . . 9 0 ∈ ℝ
26 1re 10975 . . . . . . . . 9 1 ∈ ℝ
27 ioovolcl 24734 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (vol‘(0(,)1)) ∈ ℝ)
2825, 26, 27mp2an 689 . . . . . . . 8 (vol‘(0(,)1)) ∈ ℝ
29 ax-1cn 10929 . . . . . . . 8 1 ∈ ℂ
30 itgconst 24983 . . . . . . . 8 (((0(,)1) ∈ dom vol ∧ (vol‘(0(,)1)) ∈ ℝ ∧ 1 ∈ ℂ) → ∫(0(,)1)1 d𝑥 = (1 · (vol‘(0(,)1))))
3124, 28, 29, 30mp3an 1460 . . . . . . 7 ∫(0(,)1)1 d𝑥 = (1 · (vol‘(0(,)1)))
32 0le1 11498 . . . . . . . . . 10 0 ≤ 1
33 volioo 24733 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1) → (vol‘(0(,)1)) = (1 − 0))
3425, 26, 32, 33mp3an 1460 . . . . . . . . 9 (vol‘(0(,)1)) = (1 − 0)
3529subid1i 11293 . . . . . . . . 9 (1 − 0) = 1
3634, 35eqtri 2766 . . . . . . . 8 (vol‘(0(,)1)) = 1
3736oveq2i 7286 . . . . . . 7 (1 · (vol‘(0(,)1))) = (1 · 1)
3829mulid1i 10979 . . . . . . 7 (1 · 1) = 1
3931, 37, 383eqtri 2770 . . . . . 6 ∫(0(,)1)1 d𝑥 = 1
4023, 39eqtrdi 2794 . . . . 5 (𝑁 = 0 → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 1)
4140adantl 482 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 1)
4241eqcomd 2744 . . 3 ((𝑁 ∈ ℤ ∧ 𝑁 = 0) → 1 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
43 ioomax 13154 . . . . . . 7 (-∞(,)+∞) = ℝ
4443eqcomi 2747 . . . . . 6 ℝ = (-∞(,)+∞)
45 0red 10978 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ∈ ℝ)
46 1red 10976 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 1 ∈ ℝ)
4732a1i 11 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ≤ 1)
485a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℝ ⊆ ℂ)
4948sselda 3921 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
5010a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → i ∈ ℂ)
51 2cnd 12051 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 2 ∈ ℂ)
5212a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → π ∈ ℂ)
5351, 52mulcld 10995 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (2 · π) ∈ ℂ)
5450, 53mulcld 10995 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (i · (2 · π)) ∈ ℂ)
55 simpl 483 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℤ)
5655zcnd 12427 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ∈ ℂ)
5754, 56mulcld 10995 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
5857adantr 481 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
59 simpr 485 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
6058, 59mulcld 10995 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → (((i · (2 · π)) · 𝑁) · 𝑦) ∈ ℂ)
6160efcld 32571 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℂ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) ∈ ℂ)
6249, 61syldan 591 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) ∈ ℂ)
6357adantr 481 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
64 ine0 11410 . . . . . . . . . . . 12 i ≠ 0
65 2ne0 12077 . . . . . . . . . . . . 13 2 ≠ 0
66 pipos 25617 . . . . . . . . . . . . . 14 0 < π
6725, 66gtneii 11087 . . . . . . . . . . . . 13 π ≠ 0
6811, 12, 65, 67mulne0i 11618 . . . . . . . . . . . 12 (2 · π) ≠ 0
6910, 13, 64, 68mulne0i 11618 . . . . . . . . . . 11 (i · (2 · π)) ≠ 0
7069a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (i · (2 · π)) ≠ 0)
71 simpr 485 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ¬ 𝑁 = 0)
7271neqned 2950 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 𝑁 ≠ 0)
7354, 56, 70, 72mulne0d 11627 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((i · (2 · π)) · 𝑁) ≠ 0)
7473adantr 481 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ≠ 0)
7562, 63, 74divcld 11751 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
7675fmpttd 6989 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))):ℝ⟶ℂ)
77 reelprrecn 10963 . . . . . . . . . 10 ℝ ∈ {ℝ, ℂ}
7877a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℝ ∈ {ℝ, ℂ})
79 cnelprrecn 10964 . . . . . . . . . 10 ℂ ∈ {ℝ, ℂ}
8079a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ℂ ∈ {ℝ, ℂ})
8163, 49mulcld 10995 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑦) ∈ ℂ)
82 simpr 485 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
8382efcld 32571 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → (exp‘𝑧) ∈ ℂ)
8457adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
8573adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((i · (2 · π)) · 𝑁) ≠ 0)
8683, 84, 85divcld 11751 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑧 ∈ ℂ) → ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
8726a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
8878dvmptid 25121 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ 𝑦)) = (𝑦 ∈ ℝ ↦ 1))
8978, 49, 87, 88, 57dvmptcmul 25128 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 1)))
9063mulid1d 10992 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 1) = ((i · (2 · π)) · 𝑁))
9190mpteq2dva 5174 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 1)) = (𝑦 ∈ ℝ ↦ ((i · (2 · π)) · 𝑁)))
9289, 91eqtrd 2778 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑦 ∈ ℝ ↦ ((i · (2 · π)) · 𝑁)))
93 dvef 25144 . . . . . . . . . . 11 (ℂ D exp) = exp
94 eff 15791 . . . . . . . . . . . . . 14 exp:ℂ⟶ℂ
9594a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp:ℂ⟶ℂ)
9695feqmptd 6837 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
9796oveq2d 7291 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D exp) = (ℂ D (𝑧 ∈ ℂ ↦ (exp‘𝑧))))
9893, 97, 963eqtr3a 2802 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D (𝑧 ∈ ℂ ↦ (exp‘𝑧))) = (𝑧 ∈ ℂ ↦ (exp‘𝑧)))
9980, 83, 83, 98, 57, 73dvmptdivc 25129 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℂ D (𝑧 ∈ ℂ ↦ ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)))) = (𝑧 ∈ ℂ ↦ ((exp‘𝑧) / ((i · (2 · π)) · 𝑁))))
100 fveq2 6774 . . . . . . . . . 10 (𝑧 = (((i · (2 · π)) · 𝑁) · 𝑦) → (exp‘𝑧) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))
101100oveq1d 7290 . . . . . . . . 9 (𝑧 = (((i · (2 · π)) · 𝑁) · 𝑦) → ((exp‘𝑧) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))
10278, 80, 81, 63, 86, 86, 92, 99, 101, 101dvmptco 25136 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁))))
10362, 63, 74divcan1d 11752 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 ∈ ℝ) → (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁)) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))
104103mpteq2dva 5174 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) · ((i · (2 · π)) · 𝑁))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
105102, 104eqtrd 2778 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
106 efcn 25602 . . . . . . . . 9 exp ∈ (ℂ–cn→ℂ)
107106a1i 11 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → exp ∈ (ℂ–cn→ℂ))
108 resmpt 5945 . . . . . . . . . 10 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)))
1095, 108mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) = (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)))
110 eqid 2738 . . . . . . . . . . . 12 (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) = (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦))
111110mulc1cncf 24068 . . . . . . . . . . 11 (((i · (2 · π)) · 𝑁) ∈ ℂ → (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ))
11257, 111syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ))
113 rescncf 24060 . . . . . . . . . . 11 (ℝ ⊆ ℂ → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ)))
1145, 113mp1i 13 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℂ–cn→ℂ) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ)))
115112, 114mpd 15 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℂ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ↾ ℝ) ∈ (ℝ–cn→ℂ))
116109, 115eqeltrrd 2840 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (((i · (2 · π)) · 𝑁) · 𝑦)) ∈ (ℝ–cn→ℂ))
117107, 116cncfmpt1f 24077 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) ∈ (ℝ–cn→ℂ))
118105, 117eqeltrd 2839 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) ∈ (ℝ–cn→ℂ))
11944, 45, 46, 47, 76, 118ftc2re 32578 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)))
1204sseli 3917 . . . . . . . 8 (𝑥 ∈ (0(,)1) → 𝑥 ∈ ℝ)
121105adantr 481 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))) = (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))))
122121fveq1d 6776 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥))
123 oveq2 7283 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 𝑥))
124123fveq2d 6778 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
125124cbvmptv 5187 . . . . . . . . . . . 12 (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑥 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
126125a1i 11 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦))) = (𝑥 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑥))))
12757adantr 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((i · (2 · π)) · 𝑁) ∈ ℂ)
12848sselda 3921 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
129127, 128mulcld 10995 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑥) ∈ ℂ)
130129efcld 32571 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)) ∈ ℂ)
131126, 130fvmpt2d 6888 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥) = (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)))
13214a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (i · (2 · π)) ∈ ℂ)
13356adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → 𝑁 ∈ ℂ)
134132, 133, 128mulassd 10998 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (((i · (2 · π)) · 𝑁) · 𝑥) = ((i · (2 · π)) · (𝑁 · 𝑥)))
135134fveq2d 6778 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑥)) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
136131, 135eqtrd 2778 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((𝑦 ∈ ℝ ↦ (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
137122, 136eqtrd 2778 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ ℝ) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
138120, 137sylan2 593 . . . . . . 7 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑥 ∈ (0(,)1)) → ((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
139138ralrimiva 3103 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∀𝑥 ∈ (0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))))
140 itgeq2 24942 . . . . . 6 (∀𝑥 ∈ (0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) = (exp‘((i · (2 · π)) · (𝑁 · 𝑥))) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
141139, 140syl 17 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)((ℝ D (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))‘𝑥) d𝑥 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
142 eqidd 2739 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))) = (𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁))))
143 simpr 485 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → 𝑦 = 1)
144143oveq2d 7291 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 1))
145144fveq2d 6778 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 1)))
146145oveq1d 7290 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 1) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)))
14729a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 1 ∈ ℂ)
14857, 147mulcld 10995 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 1) ∈ ℂ)
149148efcld 32571 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) ∈ ℂ)
150149, 57, 73divcld 11751 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
151142, 146, 46, 150fvmptd 6882 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) = ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)))
15257mulid1d 10992 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 1) = ((i · (2 · π)) · 𝑁))
153152fveq2d 6778 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) = (exp‘((i · (2 · π)) · 𝑁)))
154 ef2kpi 25635 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (exp‘((i · (2 · π)) · 𝑁)) = 1)
15555, 154syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘((i · (2 · π)) · 𝑁)) = 1)
156153, 155eqtrd 2778 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 1)) = 1)
157156oveq1d 7290 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 1)) / ((i · (2 · π)) · 𝑁)) = (1 / ((i · (2 · π)) · 𝑁)))
158151, 157eqtrd 2778 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) = (1 / ((i · (2 · π)) · 𝑁)))
159 simpr 485 . . . . . . . . . . . 12 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → 𝑦 = 0)
160159oveq2d 7291 . . . . . . . . . . 11 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → (((i · (2 · π)) · 𝑁) · 𝑦) = (((i · (2 · π)) · 𝑁) · 0))
161160fveq2d 6778 . . . . . . . . . 10 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) = (exp‘(((i · (2 · π)) · 𝑁) · 0)))
162161oveq1d 7290 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) ∧ 𝑦 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)) = ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)))
1635, 45sselid 3919 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 ∈ ℂ)
16457, 163mulcld 10995 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 0) ∈ ℂ)
165164efcld 32571 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) ∈ ℂ)
166165, 57, 73divcld 11751 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
167142, 162, 45, 166fvmptd 6882 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0) = ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)))
16857mul01d 11174 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((i · (2 · π)) · 𝑁) · 0) = 0)
169168fveq2d 6778 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) = (exp‘0))
170169, 18eqtrdi 2794 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (exp‘(((i · (2 · π)) · 𝑁) · 0)) = 1)
171170oveq1d 7290 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((exp‘(((i · (2 · π)) · 𝑁) · 0)) / ((i · (2 · π)) · 𝑁)) = (1 / ((i · (2 · π)) · 𝑁)))
172167, 171eqtrd 2778 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0) = (1 / ((i · (2 · π)) · 𝑁)))
173158, 172oveq12d 7293 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)) = ((1 / ((i · (2 · π)) · 𝑁)) − (1 / ((i · (2 · π)) · 𝑁))))
174157, 150eqeltrrd 2840 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (1 / ((i · (2 · π)) · 𝑁)) ∈ ℂ)
175174subidd 11320 . . . . . 6 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ((1 / ((i · (2 · π)) · 𝑁)) − (1 / ((i · (2 · π)) · 𝑁))) = 0)
176173, 175eqtrd 2778 . . . . 5 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → (((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘1) − ((𝑦 ∈ ℝ ↦ ((exp‘(((i · (2 · π)) · 𝑁) · 𝑦)) / ((i · (2 · π)) · 𝑁)))‘0)) = 0)
177119, 141, 1763eqtr3d 2786 . . . 4 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = 0)
178177eqcomd 2744 . . 3 ((𝑁 ∈ ℤ ∧ ¬ 𝑁 = 0) → 0 = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
17942, 178ifeqda 4495 . 2 (𝑁 ∈ ℤ → if(𝑁 = 0, 1, 0) = ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥)
180179eqcomd 2744 1 (𝑁 ∈ ℤ → ∫(0(,)1)(exp‘((i · (2 · π)) · (𝑁 · 𝑥))) d𝑥 = if(𝑁 = 0, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  ifcif 4459  {cpr 4563   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872  ici 10873   · cmul 10876  +∞cpnf 11006  -∞cmnf 11007  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  cz 12319  (,)cioo 13079  expce 15771  πcpi 15776  cnccncf 24039  volcvol 24627  citg 24782   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031
This theorem is referenced by:  circlemeth  32620
  Copyright terms: Public domain W3C validator