MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprpiece1res2 Structured version   Visualization version   GIF version

Theorem oprpiece1res2 23558
Description: Restriction to the second part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
oprpiece1.1 𝐴 ∈ ℝ
oprpiece1.2 𝐵 ∈ ℝ
oprpiece1.3 𝐴𝐵
oprpiece1.4 𝑅 ∈ V
oprpiece1.5 𝑆 ∈ V
oprpiece1.6 𝐾 ∈ (𝐴[,]𝐵)
oprpiece1.7 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
oprpiece1.9 (𝑥 = 𝐾𝑅 = 𝑃)
oprpiece1.10 (𝑥 = 𝐾𝑆 = 𝑄)
oprpiece1.11 (𝑦𝐶𝑃 = 𝑄)
oprpiece1.12 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶𝑆)
Assertion
Ref Expression
oprpiece1res2 (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = 𝐺
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐾,𝑦   𝑥,𝑃   𝑥,𝑄
Allowed substitution hints:   𝑃(𝑦)   𝑄(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprpiece1res2
StepHypRef Expression
1 oprpiece1.6 . . . 4 𝐾 ∈ (𝐴[,]𝐵)
2 oprpiece1.1 . . . . . 6 𝐴 ∈ ℝ
32rexri 10701 . . . . 5 𝐴 ∈ ℝ*
4 oprpiece1.2 . . . . . 6 𝐵 ∈ ℝ
54rexri 10701 . . . . 5 𝐵 ∈ ℝ*
6 oprpiece1.3 . . . . 5 𝐴𝐵
7 ubicc2 12856 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
83, 5, 6, 7mp3an 1457 . . . 4 𝐵 ∈ (𝐴[,]𝐵)
9 iccss2 12810 . . . 4 ((𝐾 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) → (𝐾[,]𝐵) ⊆ (𝐴[,]𝐵))
101, 8, 9mp2an 690 . . 3 (𝐾[,]𝐵) ⊆ (𝐴[,]𝐵)
11 ssid 3991 . . 3 𝐶𝐶
12 resmpo 7274 . . 3 (((𝐾[,]𝐵) ⊆ (𝐴[,]𝐵) ∧ 𝐶𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)))
1310, 11, 12mp2an 690 . 2 ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
14 oprpiece1.7 . . 3 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
1514reseq1i 5851 . 2 (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶))
16 oprpiece1.12 . . 3 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶𝑆)
17 oprpiece1.11 . . . . . . 7 (𝑦𝐶𝑃 = 𝑄)
1817ad2antlr 725 . . . . . 6 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑃 = 𝑄)
19 simpr 487 . . . . . . . 8 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑥𝐾)
202, 4elicc2i 12805 . . . . . . . . . . . . 13 (𝐾 ∈ (𝐴[,]𝐵) ↔ (𝐾 ∈ ℝ ∧ 𝐴𝐾𝐾𝐵))
2120simp1bi 1141 . . . . . . . . . . . 12 (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ)
221, 21ax-mp 5 . . . . . . . . . . 11 𝐾 ∈ ℝ
2322, 4elicc2i 12805 . . . . . . . . . 10 (𝑥 ∈ (𝐾[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐾𝑥𝑥𝐵))
2423simp2bi 1142 . . . . . . . . 9 (𝑥 ∈ (𝐾[,]𝐵) → 𝐾𝑥)
2524ad2antrr 724 . . . . . . . 8 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝐾𝑥)
2623simp1bi 1141 . . . . . . . . . 10 (𝑥 ∈ (𝐾[,]𝐵) → 𝑥 ∈ ℝ)
2726ad2antrr 724 . . . . . . . . 9 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑥 ∈ ℝ)
28 letri3 10728 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑥 = 𝐾 ↔ (𝑥𝐾𝐾𝑥)))
2927, 22, 28sylancl 588 . . . . . . . 8 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → (𝑥 = 𝐾 ↔ (𝑥𝐾𝐾𝑥)))
3019, 25, 29mpbir2and 711 . . . . . . 7 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑥 = 𝐾)
31 oprpiece1.9 . . . . . . 7 (𝑥 = 𝐾𝑅 = 𝑃)
3230, 31syl 17 . . . . . 6 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑅 = 𝑃)
33 oprpiece1.10 . . . . . . 7 (𝑥 = 𝐾𝑆 = 𝑄)
3430, 33syl 17 . . . . . 6 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑆 = 𝑄)
3518, 32, 343eqtr4d 2868 . . . . 5 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑅 = 𝑆)
36 eqidd 2824 . . . . 5 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ ¬ 𝑥𝐾) → 𝑆 = 𝑆)
3735, 36ifeqda 4504 . . . 4 ((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) → if(𝑥𝐾, 𝑅, 𝑆) = 𝑆)
3837mpoeq3ia 7234 . . 3 (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶𝑆)
3916, 38eqtr4i 2849 . 2 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
4013, 15, 393eqtr4i 2856 1 (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  Vcvv 3496  wss 3938  ifcif 4469   class class class wbr 5068   × cxp 5555  cres 5559  (class class class)co 7158  cmpo 7160  cr 10538  *cxr 10676  cle 10678  [,]cicc 12744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-pre-lttri 10613  ax-pre-lttrn 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-icc 12748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator