Proof of Theorem oprpiece1res2
| Step | Hyp | Ref
| Expression |
| 1 | | oprpiece1.6 |
. . . 4
⊢ 𝐾 ∈ (𝐴[,]𝐵) |
| 2 | | oprpiece1.1 |
. . . . . 6
⊢ 𝐴 ∈ ℝ |
| 3 | 2 | rexri 11302 |
. . . . 5
⊢ 𝐴 ∈
ℝ* |
| 4 | | oprpiece1.2 |
. . . . . 6
⊢ 𝐵 ∈ ℝ |
| 5 | 4 | rexri 11302 |
. . . . 5
⊢ 𝐵 ∈
ℝ* |
| 6 | | oprpiece1.3 |
. . . . 5
⊢ 𝐴 ≤ 𝐵 |
| 7 | | ubicc2 13488 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
| 8 | 3, 5, 6, 7 | mp3an 1462 |
. . . 4
⊢ 𝐵 ∈ (𝐴[,]𝐵) |
| 9 | | iccss2 13441 |
. . . 4
⊢ ((𝐾 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) → (𝐾[,]𝐵) ⊆ (𝐴[,]𝐵)) |
| 10 | 1, 8, 9 | mp2an 692 |
. . 3
⊢ (𝐾[,]𝐵) ⊆ (𝐴[,]𝐵) |
| 11 | | ssid 3988 |
. . 3
⊢ 𝐶 ⊆ 𝐶 |
| 12 | | resmpo 7536 |
. . 3
⊢ (((𝐾[,]𝐵) ⊆ (𝐴[,]𝐵) ∧ 𝐶 ⊆ 𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆))) |
| 13 | 10, 11, 12 | mp2an 692 |
. 2
⊢ ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
| 14 | | oprpiece1.7 |
. . 3
⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
| 15 | 14 | reseq1i 5975 |
. 2
⊢ (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶)) |
| 16 | | oprpiece1.12 |
. . 3
⊢ 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ 𝑆) |
| 17 | | oprpiece1.11 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐶 → 𝑃 = 𝑄) |
| 18 | 17 | ad2antlr 727 |
. . . . . 6
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑃 = 𝑄) |
| 19 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑥 ≤ 𝐾) |
| 20 | 2, 4 | elicc2i 13436 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (𝐴[,]𝐵) ↔ (𝐾 ∈ ℝ ∧ 𝐴 ≤ 𝐾 ∧ 𝐾 ≤ 𝐵)) |
| 21 | 20 | simp1bi 1145 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ) |
| 22 | 1, 21 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝐾 ∈ ℝ |
| 23 | 22, 4 | elicc2i 13436 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐾[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐾 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 24 | 23 | simp2bi 1146 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐾[,]𝐵) → 𝐾 ≤ 𝑥) |
| 25 | 24 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝐾 ≤ 𝑥) |
| 26 | 23 | simp1bi 1145 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐾[,]𝐵) → 𝑥 ∈ ℝ) |
| 27 | 26 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑥 ∈ ℝ) |
| 28 | | letri3 11329 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑥 = 𝐾 ↔ (𝑥 ≤ 𝐾 ∧ 𝐾 ≤ 𝑥))) |
| 29 | 27, 22, 28 | sylancl 586 |
. . . . . . . 8
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → (𝑥 = 𝐾 ↔ (𝑥 ≤ 𝐾 ∧ 𝐾 ≤ 𝑥))) |
| 30 | 19, 25, 29 | mpbir2and 713 |
. . . . . . 7
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑥 = 𝐾) |
| 31 | | oprpiece1.9 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → 𝑅 = 𝑃) |
| 32 | 30, 31 | syl 17 |
. . . . . 6
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑅 = 𝑃) |
| 33 | | oprpiece1.10 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → 𝑆 = 𝑄) |
| 34 | 30, 33 | syl 17 |
. . . . . 6
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑆 = 𝑄) |
| 35 | 18, 32, 34 | 3eqtr4d 2779 |
. . . . 5
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑅 = 𝑆) |
| 36 | | eqidd 2735 |
. . . . 5
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ ¬ 𝑥 ≤ 𝐾) → 𝑆 = 𝑆) |
| 37 | 35, 36 | ifeqda 4544 |
. . . 4
⊢ ((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑆) |
| 38 | 37 | mpoeq3ia 7494 |
. . 3
⊢ (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ 𝑆) |
| 39 | 16, 38 | eqtr4i 2760 |
. 2
⊢ 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
| 40 | 13, 15, 39 | 3eqtr4i 2767 |
1
⊢ (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = 𝐺 |