MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprpiece1res2 Structured version   Visualization version   GIF version

Theorem oprpiece1res2 24021
Description: Restriction to the second part of a piecewise defined function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
oprpiece1.1 𝐴 ∈ ℝ
oprpiece1.2 𝐵 ∈ ℝ
oprpiece1.3 𝐴𝐵
oprpiece1.4 𝑅 ∈ V
oprpiece1.5 𝑆 ∈ V
oprpiece1.6 𝐾 ∈ (𝐴[,]𝐵)
oprpiece1.7 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
oprpiece1.9 (𝑥 = 𝐾𝑅 = 𝑃)
oprpiece1.10 (𝑥 = 𝐾𝑆 = 𝑄)
oprpiece1.11 (𝑦𝐶𝑃 = 𝑄)
oprpiece1.12 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶𝑆)
Assertion
Ref Expression
oprpiece1res2 (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = 𝐺
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐾,𝑦   𝑥,𝑃   𝑥,𝑄
Allowed substitution hints:   𝑃(𝑦)   𝑄(𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem oprpiece1res2
StepHypRef Expression
1 oprpiece1.6 . . . 4 𝐾 ∈ (𝐴[,]𝐵)
2 oprpiece1.1 . . . . . 6 𝐴 ∈ ℝ
32rexri 10964 . . . . 5 𝐴 ∈ ℝ*
4 oprpiece1.2 . . . . . 6 𝐵 ∈ ℝ
54rexri 10964 . . . . 5 𝐵 ∈ ℝ*
6 oprpiece1.3 . . . . 5 𝐴𝐵
7 ubicc2 13126 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
83, 5, 6, 7mp3an 1459 . . . 4 𝐵 ∈ (𝐴[,]𝐵)
9 iccss2 13079 . . . 4 ((𝐾 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) → (𝐾[,]𝐵) ⊆ (𝐴[,]𝐵))
101, 8, 9mp2an 688 . . 3 (𝐾[,]𝐵) ⊆ (𝐴[,]𝐵)
11 ssid 3939 . . 3 𝐶𝐶
12 resmpo 7372 . . 3 (((𝐾[,]𝐵) ⊆ (𝐴[,]𝐵) ∧ 𝐶𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)))
1310, 11, 12mp2an 688 . 2 ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
14 oprpiece1.7 . . 3 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
1514reseq1i 5876 . 2 (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶))
16 oprpiece1.12 . . 3 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶𝑆)
17 oprpiece1.11 . . . . . . 7 (𝑦𝐶𝑃 = 𝑄)
1817ad2antlr 723 . . . . . 6 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑃 = 𝑄)
19 simpr 484 . . . . . . . 8 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑥𝐾)
202, 4elicc2i 13074 . . . . . . . . . . . . 13 (𝐾 ∈ (𝐴[,]𝐵) ↔ (𝐾 ∈ ℝ ∧ 𝐴𝐾𝐾𝐵))
2120simp1bi 1143 . . . . . . . . . . . 12 (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ)
221, 21ax-mp 5 . . . . . . . . . . 11 𝐾 ∈ ℝ
2322, 4elicc2i 13074 . . . . . . . . . 10 (𝑥 ∈ (𝐾[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐾𝑥𝑥𝐵))
2423simp2bi 1144 . . . . . . . . 9 (𝑥 ∈ (𝐾[,]𝐵) → 𝐾𝑥)
2524ad2antrr 722 . . . . . . . 8 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝐾𝑥)
2623simp1bi 1143 . . . . . . . . . 10 (𝑥 ∈ (𝐾[,]𝐵) → 𝑥 ∈ ℝ)
2726ad2antrr 722 . . . . . . . . 9 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑥 ∈ ℝ)
28 letri3 10991 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑥 = 𝐾 ↔ (𝑥𝐾𝐾𝑥)))
2927, 22, 28sylancl 585 . . . . . . . 8 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → (𝑥 = 𝐾 ↔ (𝑥𝐾𝐾𝑥)))
3019, 25, 29mpbir2and 709 . . . . . . 7 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑥 = 𝐾)
31 oprpiece1.9 . . . . . . 7 (𝑥 = 𝐾𝑅 = 𝑃)
3230, 31syl 17 . . . . . 6 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑅 = 𝑃)
33 oprpiece1.10 . . . . . . 7 (𝑥 = 𝐾𝑆 = 𝑄)
3430, 33syl 17 . . . . . 6 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑆 = 𝑄)
3518, 32, 343eqtr4d 2788 . . . . 5 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ 𝑥𝐾) → 𝑅 = 𝑆)
36 eqidd 2739 . . . . 5 (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) ∧ ¬ 𝑥𝐾) → 𝑆 = 𝑆)
3735, 36ifeqda 4492 . . . 4 ((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦𝐶) → if(𝑥𝐾, 𝑅, 𝑆) = 𝑆)
3837mpoeq3ia 7331 . . 3 (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶𝑆)
3916, 38eqtr4i 2769 . 2 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦𝐶 ↦ if(𝑥𝐾, 𝑅, 𝑆))
4013, 15, 393eqtr4i 2776 1 (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = 𝐺
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  ifcif 4456   class class class wbr 5070   × cxp 5578  cres 5582  (class class class)co 7255  cmpo 7257  cr 10801  *cxr 10939  cle 10941  [,]cicc 13011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-icc 13015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator