Proof of Theorem oprpiece1res2
Step | Hyp | Ref
| Expression |
1 | | oprpiece1.6 |
. . . 4
⊢ 𝐾 ∈ (𝐴[,]𝐵) |
2 | | oprpiece1.1 |
. . . . . 6
⊢ 𝐴 ∈ ℝ |
3 | 2 | rexri 11033 |
. . . . 5
⊢ 𝐴 ∈
ℝ* |
4 | | oprpiece1.2 |
. . . . . 6
⊢ 𝐵 ∈ ℝ |
5 | 4 | rexri 11033 |
. . . . 5
⊢ 𝐵 ∈
ℝ* |
6 | | oprpiece1.3 |
. . . . 5
⊢ 𝐴 ≤ 𝐵 |
7 | | ubicc2 13197 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
≤ 𝐵) → 𝐵 ∈ (𝐴[,]𝐵)) |
8 | 3, 5, 6, 7 | mp3an 1460 |
. . . 4
⊢ 𝐵 ∈ (𝐴[,]𝐵) |
9 | | iccss2 13150 |
. . . 4
⊢ ((𝐾 ∈ (𝐴[,]𝐵) ∧ 𝐵 ∈ (𝐴[,]𝐵)) → (𝐾[,]𝐵) ⊆ (𝐴[,]𝐵)) |
10 | 1, 8, 9 | mp2an 689 |
. . 3
⊢ (𝐾[,]𝐵) ⊆ (𝐴[,]𝐵) |
11 | | ssid 3943 |
. . 3
⊢ 𝐶 ⊆ 𝐶 |
12 | | resmpo 7394 |
. . 3
⊢ (((𝐾[,]𝐵) ⊆ (𝐴[,]𝐵) ∧ 𝐶 ⊆ 𝐶) → ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆))) |
13 | 10, 11, 12 | mp2an 689 |
. 2
⊢ ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
14 | | oprpiece1.7 |
. . 3
⊢ 𝐹 = (𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
15 | 14 | reseq1i 5887 |
. 2
⊢ (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = ((𝑥 ∈ (𝐴[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) ↾ ((𝐾[,]𝐵) × 𝐶)) |
16 | | oprpiece1.12 |
. . 3
⊢ 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ 𝑆) |
17 | | oprpiece1.11 |
. . . . . . 7
⊢ (𝑦 ∈ 𝐶 → 𝑃 = 𝑄) |
18 | 17 | ad2antlr 724 |
. . . . . 6
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑃 = 𝑄) |
19 | | simpr 485 |
. . . . . . . 8
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑥 ≤ 𝐾) |
20 | 2, 4 | elicc2i 13145 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ (𝐴[,]𝐵) ↔ (𝐾 ∈ ℝ ∧ 𝐴 ≤ 𝐾 ∧ 𝐾 ≤ 𝐵)) |
21 | 20 | simp1bi 1144 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ (𝐴[,]𝐵) → 𝐾 ∈ ℝ) |
22 | 1, 21 | ax-mp 5 |
. . . . . . . . . . 11
⊢ 𝐾 ∈ ℝ |
23 | 22, 4 | elicc2i 13145 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐾[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐾 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
24 | 23 | simp2bi 1145 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝐾[,]𝐵) → 𝐾 ≤ 𝑥) |
25 | 24 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝐾 ≤ 𝑥) |
26 | 23 | simp1bi 1144 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (𝐾[,]𝐵) → 𝑥 ∈ ℝ) |
27 | 26 | ad2antrr 723 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑥 ∈ ℝ) |
28 | | letri3 11060 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝑥 = 𝐾 ↔ (𝑥 ≤ 𝐾 ∧ 𝐾 ≤ 𝑥))) |
29 | 27, 22, 28 | sylancl 586 |
. . . . . . . 8
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → (𝑥 = 𝐾 ↔ (𝑥 ≤ 𝐾 ∧ 𝐾 ≤ 𝑥))) |
30 | 19, 25, 29 | mpbir2and 710 |
. . . . . . 7
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑥 = 𝐾) |
31 | | oprpiece1.9 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → 𝑅 = 𝑃) |
32 | 30, 31 | syl 17 |
. . . . . 6
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑅 = 𝑃) |
33 | | oprpiece1.10 |
. . . . . . 7
⊢ (𝑥 = 𝐾 → 𝑆 = 𝑄) |
34 | 30, 33 | syl 17 |
. . . . . 6
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑆 = 𝑄) |
35 | 18, 32, 34 | 3eqtr4d 2788 |
. . . . 5
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ 𝑥 ≤ 𝐾) → 𝑅 = 𝑆) |
36 | | eqidd 2739 |
. . . . 5
⊢ (((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) ∧ ¬ 𝑥 ≤ 𝐾) → 𝑆 = 𝑆) |
37 | 35, 36 | ifeqda 4495 |
. . . 4
⊢ ((𝑥 ∈ (𝐾[,]𝐵) ∧ 𝑦 ∈ 𝐶) → if(𝑥 ≤ 𝐾, 𝑅, 𝑆) = 𝑆) |
38 | 37 | mpoeq3ia 7353 |
. . 3
⊢ (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ 𝑆) |
39 | 16, 38 | eqtr4i 2769 |
. 2
⊢ 𝐺 = (𝑥 ∈ (𝐾[,]𝐵), 𝑦 ∈ 𝐶 ↦ if(𝑥 ≤ 𝐾, 𝑅, 𝑆)) |
40 | 13, 15, 39 | 3eqtr4i 2776 |
1
⊢ (𝐹 ↾ ((𝐾[,]𝐵) × 𝐶)) = 𝐺 |