![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reabsifpos | Structured version Visualization version GIF version |
Description: Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
Ref | Expression |
---|---|
reabsifpos | ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(0 < 𝐴, 𝐴, -𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11267 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
2 | ltle 11353 | . . . . . . 7 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴)) | |
3 | 1, 2 | mpan 690 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴)) |
4 | 3 | imdistani 568 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) |
5 | absid 15338 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (abs‘𝐴) = 𝐴) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (abs‘𝐴) = 𝐴) |
7 | 6 | eqcomd 2742 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 = (abs‘𝐴)) |
8 | id 22 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
9 | 0red 11268 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
10 | 8, 9 | lenltd 11411 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ ¬ 0 < 𝐴)) |
11 | 10 | pm5.32i 574 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) ↔ (𝐴 ∈ ℝ ∧ ¬ 0 < 𝐴)) |
12 | absnid 15340 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴) | |
13 | 11, 12 | sylbir 235 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ ¬ 0 < 𝐴) → (abs‘𝐴) = -𝐴) |
14 | 13 | eqcomd 2742 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ ¬ 0 < 𝐴) → -𝐴 = (abs‘𝐴)) |
15 | 7, 14 | ifeqda 4568 | . 2 ⊢ (𝐴 ∈ ℝ → if(0 < 𝐴, 𝐴, -𝐴) = (abs‘𝐴)) |
16 | 15 | eqcomd 2742 | 1 ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(0 < 𝐴, 𝐴, -𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ifcif 4532 class class class wbr 5149 ‘cfv 6566 ℝcr 11158 0cc0 11159 < clt 11299 ≤ cle 11300 -cneg 11497 abscabs 15276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-sup 9486 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-n0 12531 df-z 12618 df-uz 12883 df-rp 13039 df-seq 14046 df-exp 14106 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |