Step | Hyp | Ref
| Expression |
1 | | madjusmdet.n |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | nnuz 12550 |
. . . . . . . . . . . 12
⊢ ℕ =
(ℤ≥‘1) |
3 | 1, 2 | eleqtrdi 2849 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
4 | | eluzfz2 13193 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘1) → 𝑁 ∈ (1...𝑁)) |
5 | 3, 4 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
6 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(1...𝑁) = (1...𝑁) |
7 | | madjusmdetlem2.s |
. . . . . . . . . . 11
⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) |
8 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁)) |
9 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁))) |
10 | 6, 7, 8, 9 | fzto1st 31272 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
11 | 5, 10 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
12 | 8, 9 | symgbasf1o 18897 |
. . . . . . . . 9
⊢ (𝑆 ∈
(Base‘(SymGrp‘(1...𝑁))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁)) |
13 | 11, 12 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁)) |
14 | 13 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁)) |
15 | | fznatpl1 13239 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ∈ (1...𝑁)) |
16 | 1, 15 | sylan 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ∈ (1...𝑁)) |
17 | | eqeq1 2742 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑥 → (𝑖 = 1 ↔ 𝑥 = 1)) |
18 | | breq1 5073 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑥 → (𝑖 ≤ 𝑁 ↔ 𝑥 ≤ 𝑁)) |
19 | | oveq1 7262 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑥 → (𝑖 − 1) = (𝑥 − 1)) |
20 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑥 → 𝑖 = 𝑥) |
21 | 18, 19, 20 | ifbieq12d 4484 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑥 → if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖) = if(𝑥 ≤ 𝑁, (𝑥 − 1), 𝑥)) |
22 | 17, 21 | ifbieq2d 4482 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑥 → if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖)) = if(𝑥 = 1, 𝑁, if(𝑥 ≤ 𝑁, (𝑥 − 1), 𝑥))) |
23 | 22 | cbvmptv 5183 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥 ≤ 𝑁, (𝑥 − 1), 𝑥))) |
24 | 7, 23 | eqtri 2766 |
. . . . . . . . . 10
⊢ 𝑆 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥 ≤ 𝑁, (𝑥 − 1), 𝑥))) |
25 | 24 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑆 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥 ≤ 𝑁, (𝑥 − 1), 𝑥)))) |
26 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1)) |
27 | | 1red 10907 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ∈
ℝ) |
28 | | fz1ssnn 13216 |
. . . . . . . . . . . . . . . . . . 19
⊢
(1...(𝑁 − 1))
⊆ ℕ |
29 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ (1...(𝑁 − 1))) |
30 | 28, 29 | sselid 3915 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℕ) |
31 | 30 | nnrpd 12699 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈
ℝ+) |
32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 ∈
ℝ+) |
33 | 27, 32 | ltaddrp2d 12735 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 < (𝑋 + 1)) |
34 | 27, 33 | ltned 11041 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ≠ (𝑋 + 1)) |
35 | 34 | necomd 2998 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≠ 1) |
36 | 26, 35 | eqnetrd 3010 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 ≠ 1) |
37 | 36 | neneqd 2947 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥 = 1) |
38 | 37 | iffalsed 4467 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝑁, if(𝑥 ≤ 𝑁, (𝑥 − 1), 𝑥)) = if(𝑥 ≤ 𝑁, (𝑥 − 1), 𝑥)) |
39 | 1 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ) |
40 | 30 | nnnn0d 12223 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈
ℕ0) |
41 | 39 | nnnn0d 12223 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑁 ∈
ℕ0) |
42 | | elfzle2 13189 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ (1...(𝑁 − 1)) → 𝑋 ≤ (𝑁 − 1)) |
43 | 29, 42 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ≤ (𝑁 − 1)) |
44 | | nn0ltlem1 12310 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝑋 < 𝑁 ↔ 𝑋 ≤ (𝑁 − 1))) |
45 | 44 | biimpar 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝑋 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) ∧ 𝑋 ≤ (𝑁 − 1)) → 𝑋 < 𝑁) |
46 | 40, 41, 43, 45 | syl21anc 834 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 < 𝑁) |
47 | | nnltp1le 12306 |
. . . . . . . . . . . . . . 15
⊢ ((𝑋 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑋 < 𝑁 ↔ (𝑋 + 1) ≤ 𝑁)) |
48 | 47 | biimpa 476 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑋 < 𝑁) → (𝑋 + 1) ≤ 𝑁) |
49 | 30, 39, 46, 48 | syl21anc 834 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ≤ 𝑁) |
50 | 49 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≤ 𝑁) |
51 | 26, 50 | eqbrtrd 5092 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 ≤ 𝑁) |
52 | 51 | iftrued 4464 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 ≤ 𝑁, (𝑥 − 1), 𝑥) = (𝑥 − 1)) |
53 | 26 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = ((𝑋 + 1) − 1)) |
54 | 30 | nncnd 11919 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℂ) |
55 | | 1cnd 10901 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 1 ∈
ℂ) |
56 | 54, 55 | pncand 11263 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → ((𝑋 + 1) − 1) = 𝑋) |
57 | 56 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ((𝑋 + 1) − 1) = 𝑋) |
58 | 53, 57 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = 𝑋) |
59 | 38, 52, 58 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝑁, if(𝑥 ≤ 𝑁, (𝑥 − 1), 𝑥)) = 𝑋) |
60 | 25, 59, 16, 29 | fvmptd 6864 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (𝑆‘(𝑋 + 1)) = 𝑋) |
61 | 60 | idi 1 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (𝑆‘(𝑋 + 1)) = 𝑋) |
62 | | f1ocnvfv 7131 |
. . . . . . . 8
⊢ ((𝑆:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑋 + 1) ∈ (1...𝑁)) → ((𝑆‘(𝑋 + 1)) = 𝑋 → (◡𝑆‘𝑋) = (𝑋 + 1))) |
63 | 62 | imp 406 |
. . . . . . 7
⊢ (((𝑆:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑋 + 1) ∈ (1...𝑁)) ∧ (𝑆‘(𝑋 + 1)) = 𝑋) → (◡𝑆‘𝑋) = (𝑋 + 1)) |
64 | 14, 16, 61, 63 | syl21anc 834 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (◡𝑆‘𝑋) = (𝑋 + 1)) |
65 | 64 | fveq2d 6760 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (𝑃‘(◡𝑆‘𝑋)) = (𝑃‘(𝑋 + 1))) |
66 | 65 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑃‘(◡𝑆‘𝑋)) = (𝑃‘(𝑋 + 1))) |
67 | | madjusmdetlem2.p |
. . . . . . 7
⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
68 | 20 | breq1d 5080 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑥 → (𝑖 ≤ 𝐼 ↔ 𝑥 ≤ 𝐼)) |
69 | 68, 19, 20 | ifbieq12d 4484 |
. . . . . . . . 9
⊢ (𝑖 = 𝑥 → if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖) = if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)) |
70 | 17, 69 | ifbieq2d 4482 |
. . . . . . . 8
⊢ (𝑖 = 𝑥 → if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖)) = if(𝑥 = 1, 𝐼, if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥))) |
71 | 70 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥))) |
72 | 67, 71 | eqtri 2766 |
. . . . . 6
⊢ 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥))) |
73 | 72 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)))) |
74 | 33, 26 | breqtrrd 5098 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 < 𝑥) |
75 | 27, 74 | ltned 11041 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ≠ 𝑥) |
76 | 75 | necomd 2998 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 ≠ 1) |
77 | 76 | neneqd 2947 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥 = 1) |
78 | 77 | iffalsed 4467 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)) = if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)) |
79 | 78 | adantlr 711 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)) = if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)) |
80 | | simpr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1)) |
81 | 30 | ad2antrr 722 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 ∈ ℕ) |
82 | | fz1ssnn 13216 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
ℕ |
83 | | madjusmdet.i |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
84 | 82, 83 | sselid 3915 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ ℕ) |
85 | 84 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝐼 ∈ ℕ) |
86 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 < 𝐼) |
87 | | nnltp1le 12306 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝑋 < 𝐼 ↔ (𝑋 + 1) ≤ 𝐼)) |
88 | 87 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝑋 < 𝐼) → (𝑋 + 1) ≤ 𝐼) |
89 | 81, 85, 86, 88 | syl21anc 834 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≤ 𝐼) |
90 | 80, 89 | eqbrtrd 5092 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 ≤ 𝐼) |
91 | 90 | iftrued 4464 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥) = (𝑥 − 1)) |
92 | 58 | adantlr 711 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = 𝑋) |
93 | 79, 91, 92 | 3eqtrd 2782 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)) = 𝑋) |
94 | 16 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑋 + 1) ∈ (1...𝑁)) |
95 | | simplr 765 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑋 ∈ (1...(𝑁 − 1))) |
96 | 73, 93, 94, 95 | fvmptd 6864 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑃‘(𝑋 + 1)) = 𝑋) |
97 | 66, 96 | eqtr2d 2779 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑋 = (𝑃‘(◡𝑆‘𝑋))) |
98 | 65 | adantr 480 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑃‘(◡𝑆‘𝑋)) = (𝑃‘(𝑋 + 1))) |
99 | 72 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)))) |
100 | 78 | adantlr 711 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)) = if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)) |
101 | 30 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥 ≤ 𝐼) → 𝑋 ∈ ℕ) |
102 | 84 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥 ≤ 𝐼) → 𝐼 ∈ ℕ) |
103 | 26 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥 ≤ 𝐼) → 𝑥 = (𝑋 + 1)) |
104 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥 ≤ 𝐼) → 𝑥 ≤ 𝐼) |
105 | 103, 104 | eqbrtrrd 5094 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥 ≤ 𝐼) → (𝑋 + 1) ≤ 𝐼) |
106 | 87 | biimpar 477 |
. . . . . . . . . . . . 13
⊢ (((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ (𝑋 + 1) ≤ 𝐼) → 𝑋 < 𝐼) |
107 | 101, 102,
105, 106 | syl21anc 834 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥 ≤ 𝐼) → 𝑋 < 𝐼) |
108 | 107 | ex 412 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 ≤ 𝐼 → 𝑋 < 𝐼)) |
109 | 108 | con3d 152 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (¬ 𝑋 < 𝐼 → ¬ 𝑥 ≤ 𝐼)) |
110 | 109 | imp 406 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑥 ≤ 𝐼) |
111 | 110 | an32s 648 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥 ≤ 𝐼) |
112 | 111 | iffalsed 4467 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥) = 𝑥) |
113 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1)) |
114 | 112, 113 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥) = (𝑋 + 1)) |
115 | 100, 114 | eqtrd 2778 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥 ≤ 𝐼, (𝑥 − 1), 𝑥)) = (𝑋 + 1)) |
116 | 16 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) ∈ (1...𝑁)) |
117 | 99, 115, 116, 116 | fvmptd 6864 |
. . . 4
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑃‘(𝑋 + 1)) = (𝑋 + 1)) |
118 | 98, 117 | eqtr2d 2779 |
. . 3
⊢ (((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) = (𝑃‘(◡𝑆‘𝑋))) |
119 | 97, 118 | ifeqda 4492 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = (𝑃‘(◡𝑆‘𝑋))) |
120 | | f1ocnv 6712 |
. . . . . 6
⊢ (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → ◡𝑆:(1...𝑁)–1-1-onto→(1...𝑁)) |
121 | 11, 12, 120 | 3syl 18 |
. . . . 5
⊢ (𝜑 → ◡𝑆:(1...𝑁)–1-1-onto→(1...𝑁)) |
122 | | f1ofun 6702 |
. . . . 5
⊢ (◡𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → Fun ◡𝑆) |
123 | 121, 122 | syl 17 |
. . . 4
⊢ (𝜑 → Fun ◡𝑆) |
124 | 123 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → Fun ◡𝑆) |
125 | | fzdif2 31014 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
126 | 3, 125 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
127 | | difss 4062 |
. . . . . . 7
⊢
((1...𝑁) ∖
{𝑁}) ⊆ (1...𝑁) |
128 | 126, 127 | eqsstrrdi 3972 |
. . . . . 6
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
129 | | f1odm 6704 |
. . . . . . 7
⊢ (◡𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → dom ◡𝑆 = (1...𝑁)) |
130 | 121, 129 | syl 17 |
. . . . . 6
⊢ (𝜑 → dom ◡𝑆 = (1...𝑁)) |
131 | 128, 130 | sseqtrrd 3958 |
. . . . 5
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ dom ◡𝑆) |
132 | 131 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (1...(𝑁 − 1)) ⊆ dom ◡𝑆) |
133 | 132, 29 | sseldd 3918 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ dom ◡𝑆) |
134 | | fvco 6848 |
. . 3
⊢ ((Fun
◡𝑆 ∧ 𝑋 ∈ dom ◡𝑆) → ((𝑃 ∘ ◡𝑆)‘𝑋) = (𝑃‘(◡𝑆‘𝑋))) |
135 | 124, 133,
134 | syl2anc 583 |
. 2
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → ((𝑃 ∘ ◡𝑆)‘𝑋) = (𝑃‘(◡𝑆‘𝑋))) |
136 | 119, 135 | eqtr4d 2781 |
1
⊢ ((𝜑 ∧ 𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃 ∘ ◡𝑆)‘𝑋)) |