Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem2 Structured version   Visualization version   GIF version

Theorem madjusmdetlem2 32409
Description: Lemma for madjusmdet 32412. (Contributed by Thierry Arnoux, 26-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem2.p 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
madjusmdetlem2.s 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
Assertion
Ref Expression
madjusmdetlem2 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃𝑆)‘𝑋))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐼   𝑖,𝐽   𝑖,𝑀   𝑖,𝑁   𝑃,𝑖   𝑅,𝑖   𝜑,𝑖   𝑆,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝐷(𝑖)   · (𝑖)   𝐸(𝑖)   𝐾(𝑖)   𝑋(𝑖)   𝑍(𝑖)

Proof of Theorem madjusmdetlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 madjusmdet.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2 nnuz 12806 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
31, 2eleqtrdi 2848 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘1))
4 eluzfz2 13449 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
53, 4syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (1...𝑁))
6 eqid 2736 . . . . . . . . . . 11 (1...𝑁) = (1...𝑁)
7 madjusmdetlem2.s . . . . . . . . . . 11 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
8 eqid 2736 . . . . . . . . . . 11 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
9 eqid 2736 . . . . . . . . . . 11 (Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁)))
106, 7, 8, 9fzto1st 31952 . . . . . . . . . 10 (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
115, 10syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
128, 9symgbasf1o 19156 . . . . . . . . 9 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
1311, 12syl 17 . . . . . . . 8 (𝜑𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
1413adantr 481 . . . . . . 7 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
15 fznatpl1 13495 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ∈ (1...𝑁))
161, 15sylan 580 . . . . . . 7 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ∈ (1...𝑁))
17 eqeq1 2740 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → (𝑖 = 1 ↔ 𝑥 = 1))
18 breq1 5108 . . . . . . . . . . . . . 14 (𝑖 = 𝑥 → (𝑖𝑁𝑥𝑁))
19 oveq1 7364 . . . . . . . . . . . . . 14 (𝑖 = 𝑥 → (𝑖 − 1) = (𝑥 − 1))
20 id 22 . . . . . . . . . . . . . 14 (𝑖 = 𝑥𝑖 = 𝑥)
2118, 19, 20ifbieq12d 4514 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → if(𝑖𝑁, (𝑖 − 1), 𝑖) = if(𝑥𝑁, (𝑥 − 1), 𝑥))
2217, 21ifbieq2d 4512 . . . . . . . . . . . 12 (𝑖 = 𝑥 → if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)) = if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)))
2322cbvmptv 5218 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖))) = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)))
247, 23eqtri 2764 . . . . . . . . . 10 𝑆 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)))
2524a1i 11 . . . . . . . . 9 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑆 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥))))
26 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1))
27 1red 11156 . . . . . . . . . . . . . . 15 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ∈ ℝ)
28 fz1ssnn 13472 . . . . . . . . . . . . . . . . . . 19 (1...(𝑁 − 1)) ⊆ ℕ
29 simpr 485 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ (1...(𝑁 − 1)))
3028, 29sselid 3942 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℕ)
3130nnrpd 12955 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℝ+)
3231adantr 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 ∈ ℝ+)
3327, 32ltaddrp2d 12991 . . . . . . . . . . . . . . 15 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 < (𝑋 + 1))
3427, 33ltned 11291 . . . . . . . . . . . . . 14 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ≠ (𝑋 + 1))
3534necomd 2999 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≠ 1)
3626, 35eqnetrd 3011 . . . . . . . . . . . 12 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 ≠ 1)
3736neneqd 2948 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥 = 1)
3837iffalsed 4497 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)) = if(𝑥𝑁, (𝑥 − 1), 𝑥))
391adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ)
4030nnnn0d 12473 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℕ0)
4139nnnn0d 12473 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ0)
42 elfzle2 13445 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...(𝑁 − 1)) → 𝑋 ≤ (𝑁 − 1))
4329, 42syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ≤ (𝑁 − 1))
44 nn0ltlem1 12563 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑋 < 𝑁𝑋 ≤ (𝑁 − 1)))
4544biimpar 478 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑋 ≤ (𝑁 − 1)) → 𝑋 < 𝑁)
4640, 41, 43, 45syl21anc 836 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 < 𝑁)
47 nnltp1le 12559 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑋 < 𝑁 ↔ (𝑋 + 1) ≤ 𝑁))
4847biimpa 477 . . . . . . . . . . . . . 14 (((𝑋 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑋 < 𝑁) → (𝑋 + 1) ≤ 𝑁)
4930, 39, 46, 48syl21anc 836 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ≤ 𝑁)
5049adantr 481 . . . . . . . . . . . 12 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≤ 𝑁)
5126, 50eqbrtrd 5127 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥𝑁)
5251iftrued 4494 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝑁, (𝑥 − 1), 𝑥) = (𝑥 − 1))
5326oveq1d 7372 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = ((𝑋 + 1) − 1))
5430nncnd 12169 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℂ)
55 1cnd 11150 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 1 ∈ ℂ)
5654, 55pncand 11513 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → ((𝑋 + 1) − 1) = 𝑋)
5756adantr 481 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ((𝑋 + 1) − 1) = 𝑋)
5853, 57eqtrd 2776 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = 𝑋)
5938, 52, 583eqtrd 2780 . . . . . . . . 9 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)) = 𝑋)
6025, 59, 16, 29fvmptd 6955 . . . . . . . 8 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑆‘(𝑋 + 1)) = 𝑋)
6160idi 1 . . . . . . 7 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑆‘(𝑋 + 1)) = 𝑋)
62 f1ocnvfv 7224 . . . . . . . 8 ((𝑆:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑋 + 1) ∈ (1...𝑁)) → ((𝑆‘(𝑋 + 1)) = 𝑋 → (𝑆𝑋) = (𝑋 + 1)))
6362imp 407 . . . . . . 7 (((𝑆:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑋 + 1) ∈ (1...𝑁)) ∧ (𝑆‘(𝑋 + 1)) = 𝑋) → (𝑆𝑋) = (𝑋 + 1))
6414, 16, 61, 63syl21anc 836 . . . . . 6 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑆𝑋) = (𝑋 + 1))
6564fveq2d 6846 . . . . 5 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑃‘(𝑆𝑋)) = (𝑃‘(𝑋 + 1)))
6665adantr 481 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑃‘(𝑆𝑋)) = (𝑃‘(𝑋 + 1)))
67 madjusmdetlem2.p . . . . . . 7 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
6820breq1d 5115 . . . . . . . . . 10 (𝑖 = 𝑥 → (𝑖𝐼𝑥𝐼))
6968, 19, 20ifbieq12d 4514 . . . . . . . . 9 (𝑖 = 𝑥 → if(𝑖𝐼, (𝑖 − 1), 𝑖) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
7017, 69ifbieq2d 4512 . . . . . . . 8 (𝑖 = 𝑥 → if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)) = if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)))
7170cbvmptv 5218 . . . . . . 7 (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))) = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)))
7267, 71eqtri 2764 . . . . . 6 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)))
7372a1i 11 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥))))
7433, 26breqtrrd 5133 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 < 𝑥)
7527, 74ltned 11291 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ≠ 𝑥)
7675necomd 2999 . . . . . . . . 9 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 ≠ 1)
7776neneqd 2948 . . . . . . . 8 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥 = 1)
7877iffalsed 4497 . . . . . . 7 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
7978adantlr 713 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
80 simpr 485 . . . . . . . 8 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1))
8130ad2antrr 724 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 ∈ ℕ)
82 fz1ssnn 13472 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ
83 madjusmdet.i . . . . . . . . . . 11 (𝜑𝐼 ∈ (1...𝑁))
8482, 83sselid 3942 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
8584ad3antrrr 728 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝐼 ∈ ℕ)
86 simplr 767 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 < 𝐼)
87 nnltp1le 12559 . . . . . . . . . 10 ((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝑋 < 𝐼 ↔ (𝑋 + 1) ≤ 𝐼))
8887biimpa 477 . . . . . . . . 9 (((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝑋 < 𝐼) → (𝑋 + 1) ≤ 𝐼)
8981, 85, 86, 88syl21anc 836 . . . . . . . 8 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≤ 𝐼)
9080, 89eqbrtrd 5127 . . . . . . 7 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥𝐼)
9190iftrued 4494 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝐼, (𝑥 − 1), 𝑥) = (𝑥 − 1))
9258adantlr 713 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = 𝑋)
9379, 91, 923eqtrd 2780 . . . . 5 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = 𝑋)
9416adantr 481 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑋 + 1) ∈ (1...𝑁))
95 simplr 767 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑋 ∈ (1...(𝑁 − 1)))
9673, 93, 94, 95fvmptd 6955 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑃‘(𝑋 + 1)) = 𝑋)
9766, 96eqtr2d 2777 . . 3 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑋 = (𝑃‘(𝑆𝑋)))
9865adantr 481 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑃‘(𝑆𝑋)) = (𝑃‘(𝑋 + 1)))
9972a1i 11 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥))))
10078adantlr 713 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
10130ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑋 ∈ ℕ)
10284ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝐼 ∈ ℕ)
10326adantr 481 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑥 = (𝑋 + 1))
104 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑥𝐼)
105103, 104eqbrtrrd 5129 . . . . . . . . . . . . 13 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → (𝑋 + 1) ≤ 𝐼)
10687biimpar 478 . . . . . . . . . . . . 13 (((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ (𝑋 + 1) ≤ 𝐼) → 𝑋 < 𝐼)
107101, 102, 105, 106syl21anc 836 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑋 < 𝐼)
108107ex 413 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥𝐼𝑋 < 𝐼))
109108con3d 152 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (¬ 𝑋 < 𝐼 → ¬ 𝑥𝐼))
110109imp 407 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑥𝐼)
111110an32s 650 . . . . . . . 8 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥𝐼)
112111iffalsed 4497 . . . . . . 7 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝐼, (𝑥 − 1), 𝑥) = 𝑥)
113 simpr 485 . . . . . . 7 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1))
114112, 113eqtrd 2776 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝐼, (𝑥 − 1), 𝑥) = (𝑋 + 1))
115100, 114eqtrd 2776 . . . . 5 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = (𝑋 + 1))
11616adantr 481 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) ∈ (1...𝑁))
11799, 115, 116, 116fvmptd 6955 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑃‘(𝑋 + 1)) = (𝑋 + 1))
11898, 117eqtr2d 2777 . . 3 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) = (𝑃‘(𝑆𝑋)))
11997, 118ifeqda 4522 . 2 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = (𝑃‘(𝑆𝑋)))
120 f1ocnv 6796 . . . . . 6 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
12111, 12, 1203syl 18 . . . . 5 (𝜑𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
122 f1ofun 6786 . . . . 5 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → Fun 𝑆)
123121, 122syl 17 . . . 4 (𝜑 → Fun 𝑆)
124123adantr 481 . . 3 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → Fun 𝑆)
125 fzdif2 31694 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
1263, 125syl 17 . . . . . . 7 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
127 difss 4091 . . . . . . 7 ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁)
128126, 127eqsstrrdi 3999 . . . . . 6 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
129 f1odm 6788 . . . . . . 7 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → dom 𝑆 = (1...𝑁))
130121, 129syl 17 . . . . . 6 (𝜑 → dom 𝑆 = (1...𝑁))
131128, 130sseqtrrd 3985 . . . . 5 (𝜑 → (1...(𝑁 − 1)) ⊆ dom 𝑆)
132131adantr 481 . . . 4 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (1...(𝑁 − 1)) ⊆ dom 𝑆)
133132, 29sseldd 3945 . . 3 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ dom 𝑆)
134 fvco 6939 . . 3 ((Fun 𝑆𝑋 ∈ dom 𝑆) → ((𝑃𝑆)‘𝑋) = (𝑃‘(𝑆𝑋)))
135124, 133, 134syl2anc 584 . 2 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → ((𝑃𝑆)‘𝑋) = (𝑃‘(𝑆𝑋)))
136119, 135eqtr4d 2779 1 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃𝑆)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  cdif 3907  wss 3910  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188  ccnv 5632  dom cdm 5633  ccom 5637  Fun wfun 6490  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cn 12153  0cn0 12413  cuz 12763  +crp 12915  ...cfz 13424  Basecbs 17083  .rcmulr 17134  SymGrpcsymg 19148  CRingccrg 19965  ℤRHomczrh 20900   Mat cmat 21754   maDet cmdat 21933   maAdju cmadu 21981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-tset 17152  df-efmnd 18679  df-symg 19149  df-pmtr 19224
This theorem is referenced by:  madjusmdetlem3  32410
  Copyright terms: Public domain W3C validator