Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem2 Structured version   Visualization version   GIF version

Theorem madjusmdetlem2 31680
Description: Lemma for madjusmdet 31683. (Contributed by Thierry Arnoux, 26-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem2.p 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
madjusmdetlem2.s 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
Assertion
Ref Expression
madjusmdetlem2 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃𝑆)‘𝑋))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐼   𝑖,𝐽   𝑖,𝑀   𝑖,𝑁   𝑃,𝑖   𝑅,𝑖   𝜑,𝑖   𝑆,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝐷(𝑖)   · (𝑖)   𝐸(𝑖)   𝐾(𝑖)   𝑋(𝑖)   𝑍(𝑖)

Proof of Theorem madjusmdetlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 madjusmdet.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2 nnuz 12550 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
31, 2eleqtrdi 2849 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘1))
4 eluzfz2 13193 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
53, 4syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (1...𝑁))
6 eqid 2738 . . . . . . . . . . 11 (1...𝑁) = (1...𝑁)
7 madjusmdetlem2.s . . . . . . . . . . 11 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
8 eqid 2738 . . . . . . . . . . 11 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
9 eqid 2738 . . . . . . . . . . 11 (Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁)))
106, 7, 8, 9fzto1st 31272 . . . . . . . . . 10 (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
115, 10syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
128, 9symgbasf1o 18897 . . . . . . . . 9 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
1311, 12syl 17 . . . . . . . 8 (𝜑𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
1413adantr 480 . . . . . . 7 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
15 fznatpl1 13239 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ∈ (1...𝑁))
161, 15sylan 579 . . . . . . 7 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ∈ (1...𝑁))
17 eqeq1 2742 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → (𝑖 = 1 ↔ 𝑥 = 1))
18 breq1 5073 . . . . . . . . . . . . . 14 (𝑖 = 𝑥 → (𝑖𝑁𝑥𝑁))
19 oveq1 7262 . . . . . . . . . . . . . 14 (𝑖 = 𝑥 → (𝑖 − 1) = (𝑥 − 1))
20 id 22 . . . . . . . . . . . . . 14 (𝑖 = 𝑥𝑖 = 𝑥)
2118, 19, 20ifbieq12d 4484 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → if(𝑖𝑁, (𝑖 − 1), 𝑖) = if(𝑥𝑁, (𝑥 − 1), 𝑥))
2217, 21ifbieq2d 4482 . . . . . . . . . . . 12 (𝑖 = 𝑥 → if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)) = if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)))
2322cbvmptv 5183 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖))) = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)))
247, 23eqtri 2766 . . . . . . . . . 10 𝑆 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)))
2524a1i 11 . . . . . . . . 9 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑆 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥))))
26 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1))
27 1red 10907 . . . . . . . . . . . . . . 15 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ∈ ℝ)
28 fz1ssnn 13216 . . . . . . . . . . . . . . . . . . 19 (1...(𝑁 − 1)) ⊆ ℕ
29 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ (1...(𝑁 − 1)))
3028, 29sselid 3915 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℕ)
3130nnrpd 12699 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℝ+)
3231adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 ∈ ℝ+)
3327, 32ltaddrp2d 12735 . . . . . . . . . . . . . . 15 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 < (𝑋 + 1))
3427, 33ltned 11041 . . . . . . . . . . . . . 14 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ≠ (𝑋 + 1))
3534necomd 2998 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≠ 1)
3626, 35eqnetrd 3010 . . . . . . . . . . . 12 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 ≠ 1)
3736neneqd 2947 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥 = 1)
3837iffalsed 4467 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)) = if(𝑥𝑁, (𝑥 − 1), 𝑥))
391adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ)
4030nnnn0d 12223 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℕ0)
4139nnnn0d 12223 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ0)
42 elfzle2 13189 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...(𝑁 − 1)) → 𝑋 ≤ (𝑁 − 1))
4329, 42syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ≤ (𝑁 − 1))
44 nn0ltlem1 12310 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑋 < 𝑁𝑋 ≤ (𝑁 − 1)))
4544biimpar 477 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑋 ≤ (𝑁 − 1)) → 𝑋 < 𝑁)
4640, 41, 43, 45syl21anc 834 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 < 𝑁)
47 nnltp1le 12306 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑋 < 𝑁 ↔ (𝑋 + 1) ≤ 𝑁))
4847biimpa 476 . . . . . . . . . . . . . 14 (((𝑋 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑋 < 𝑁) → (𝑋 + 1) ≤ 𝑁)
4930, 39, 46, 48syl21anc 834 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ≤ 𝑁)
5049adantr 480 . . . . . . . . . . . 12 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≤ 𝑁)
5126, 50eqbrtrd 5092 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥𝑁)
5251iftrued 4464 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝑁, (𝑥 − 1), 𝑥) = (𝑥 − 1))
5326oveq1d 7270 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = ((𝑋 + 1) − 1))
5430nncnd 11919 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℂ)
55 1cnd 10901 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 1 ∈ ℂ)
5654, 55pncand 11263 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → ((𝑋 + 1) − 1) = 𝑋)
5756adantr 480 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ((𝑋 + 1) − 1) = 𝑋)
5853, 57eqtrd 2778 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = 𝑋)
5938, 52, 583eqtrd 2782 . . . . . . . . 9 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)) = 𝑋)
6025, 59, 16, 29fvmptd 6864 . . . . . . . 8 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑆‘(𝑋 + 1)) = 𝑋)
6160idi 1 . . . . . . 7 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑆‘(𝑋 + 1)) = 𝑋)
62 f1ocnvfv 7131 . . . . . . . 8 ((𝑆:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑋 + 1) ∈ (1...𝑁)) → ((𝑆‘(𝑋 + 1)) = 𝑋 → (𝑆𝑋) = (𝑋 + 1)))
6362imp 406 . . . . . . 7 (((𝑆:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑋 + 1) ∈ (1...𝑁)) ∧ (𝑆‘(𝑋 + 1)) = 𝑋) → (𝑆𝑋) = (𝑋 + 1))
6414, 16, 61, 63syl21anc 834 . . . . . 6 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑆𝑋) = (𝑋 + 1))
6564fveq2d 6760 . . . . 5 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑃‘(𝑆𝑋)) = (𝑃‘(𝑋 + 1)))
6665adantr 480 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑃‘(𝑆𝑋)) = (𝑃‘(𝑋 + 1)))
67 madjusmdetlem2.p . . . . . . 7 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
6820breq1d 5080 . . . . . . . . . 10 (𝑖 = 𝑥 → (𝑖𝐼𝑥𝐼))
6968, 19, 20ifbieq12d 4484 . . . . . . . . 9 (𝑖 = 𝑥 → if(𝑖𝐼, (𝑖 − 1), 𝑖) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
7017, 69ifbieq2d 4482 . . . . . . . 8 (𝑖 = 𝑥 → if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)) = if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)))
7170cbvmptv 5183 . . . . . . 7 (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))) = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)))
7267, 71eqtri 2766 . . . . . 6 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)))
7372a1i 11 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥))))
7433, 26breqtrrd 5098 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 < 𝑥)
7527, 74ltned 11041 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ≠ 𝑥)
7675necomd 2998 . . . . . . . . 9 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 ≠ 1)
7776neneqd 2947 . . . . . . . 8 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥 = 1)
7877iffalsed 4467 . . . . . . 7 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
7978adantlr 711 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
80 simpr 484 . . . . . . . 8 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1))
8130ad2antrr 722 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 ∈ ℕ)
82 fz1ssnn 13216 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ
83 madjusmdet.i . . . . . . . . . . 11 (𝜑𝐼 ∈ (1...𝑁))
8482, 83sselid 3915 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
8584ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝐼 ∈ ℕ)
86 simplr 765 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 < 𝐼)
87 nnltp1le 12306 . . . . . . . . . 10 ((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝑋 < 𝐼 ↔ (𝑋 + 1) ≤ 𝐼))
8887biimpa 476 . . . . . . . . 9 (((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝑋 < 𝐼) → (𝑋 + 1) ≤ 𝐼)
8981, 85, 86, 88syl21anc 834 . . . . . . . 8 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≤ 𝐼)
9080, 89eqbrtrd 5092 . . . . . . 7 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥𝐼)
9190iftrued 4464 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝐼, (𝑥 − 1), 𝑥) = (𝑥 − 1))
9258adantlr 711 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = 𝑋)
9379, 91, 923eqtrd 2782 . . . . 5 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = 𝑋)
9416adantr 480 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑋 + 1) ∈ (1...𝑁))
95 simplr 765 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑋 ∈ (1...(𝑁 − 1)))
9673, 93, 94, 95fvmptd 6864 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑃‘(𝑋 + 1)) = 𝑋)
9766, 96eqtr2d 2779 . . 3 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑋 = (𝑃‘(𝑆𝑋)))
9865adantr 480 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑃‘(𝑆𝑋)) = (𝑃‘(𝑋 + 1)))
9972a1i 11 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥))))
10078adantlr 711 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
10130ad2antrr 722 . . . . . . . . . . . . 13 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑋 ∈ ℕ)
10284ad3antrrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝐼 ∈ ℕ)
10326adantr 480 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑥 = (𝑋 + 1))
104 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑥𝐼)
105103, 104eqbrtrrd 5094 . . . . . . . . . . . . 13 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → (𝑋 + 1) ≤ 𝐼)
10687biimpar 477 . . . . . . . . . . . . 13 (((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ (𝑋 + 1) ≤ 𝐼) → 𝑋 < 𝐼)
107101, 102, 105, 106syl21anc 834 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑋 < 𝐼)
108107ex 412 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥𝐼𝑋 < 𝐼))
109108con3d 152 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (¬ 𝑋 < 𝐼 → ¬ 𝑥𝐼))
110109imp 406 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑥𝐼)
111110an32s 648 . . . . . . . 8 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥𝐼)
112111iffalsed 4467 . . . . . . 7 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝐼, (𝑥 − 1), 𝑥) = 𝑥)
113 simpr 484 . . . . . . 7 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1))
114112, 113eqtrd 2778 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝐼, (𝑥 − 1), 𝑥) = (𝑋 + 1))
115100, 114eqtrd 2778 . . . . 5 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = (𝑋 + 1))
11616adantr 480 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) ∈ (1...𝑁))
11799, 115, 116, 116fvmptd 6864 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑃‘(𝑋 + 1)) = (𝑋 + 1))
11898, 117eqtr2d 2779 . . 3 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) = (𝑃‘(𝑆𝑋)))
11997, 118ifeqda 4492 . 2 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = (𝑃‘(𝑆𝑋)))
120 f1ocnv 6712 . . . . . 6 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
12111, 12, 1203syl 18 . . . . 5 (𝜑𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
122 f1ofun 6702 . . . . 5 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → Fun 𝑆)
123121, 122syl 17 . . . 4 (𝜑 → Fun 𝑆)
124123adantr 480 . . 3 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → Fun 𝑆)
125 fzdif2 31014 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
1263, 125syl 17 . . . . . . 7 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
127 difss 4062 . . . . . . 7 ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁)
128126, 127eqsstrrdi 3972 . . . . . 6 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
129 f1odm 6704 . . . . . . 7 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → dom 𝑆 = (1...𝑁))
130121, 129syl 17 . . . . . 6 (𝜑 → dom 𝑆 = (1...𝑁))
131128, 130sseqtrrd 3958 . . . . 5 (𝜑 → (1...(𝑁 − 1)) ⊆ dom 𝑆)
132131adantr 480 . . . 4 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (1...(𝑁 − 1)) ⊆ dom 𝑆)
133132, 29sseldd 3918 . . 3 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ dom 𝑆)
134 fvco 6848 . . 3 ((Fun 𝑆𝑋 ∈ dom 𝑆) → ((𝑃𝑆)‘𝑋) = (𝑃‘(𝑆𝑋)))
135124, 133, 134syl2anc 583 . 2 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → ((𝑃𝑆)‘𝑋) = (𝑃‘(𝑆𝑋)))
136119, 135eqtr4d 2781 1 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃𝑆)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  cdif 3880  wss 3883  ifcif 4456  {csn 4558   class class class wbr 5070  cmpt 5153  ccnv 5579  dom cdm 5580  ccom 5584  Fun wfun 6412  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cuz 12511  +crp 12659  ...cfz 13168  Basecbs 16840  .rcmulr 16889  SymGrpcsymg 18889  CRingccrg 19699  ℤRHomczrh 20613   Mat cmat 21464   maDet cmdat 21641   maAdju cmadu 21689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-tset 16907  df-efmnd 18423  df-symg 18890  df-pmtr 18965
This theorem is referenced by:  madjusmdetlem3  31681
  Copyright terms: Public domain W3C validator