Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem2 Structured version   Visualization version   GIF version

Theorem madjusmdetlem2 31181
Description: Lemma for madjusmdet 31184. (Contributed by Thierry Arnoux, 26-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem2.p 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
madjusmdetlem2.s 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
Assertion
Ref Expression
madjusmdetlem2 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃𝑆)‘𝑋))
Distinct variable groups:   𝐵,𝑖   𝑖,𝐼   𝑖,𝐽   𝑖,𝑀   𝑖,𝑁   𝑃,𝑖   𝑅,𝑖   𝜑,𝑖   𝑆,𝑖
Allowed substitution hints:   𝐴(𝑖)   𝐷(𝑖)   · (𝑖)   𝐸(𝑖)   𝐾(𝑖)   𝑋(𝑖)   𝑍(𝑖)

Proof of Theorem madjusmdetlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 madjusmdet.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℕ)
2 nnuz 12269 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
31, 2eleqtrdi 2900 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘1))
4 eluzfz2 12910 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
53, 4syl 17 . . . . . . . . . 10 (𝜑𝑁 ∈ (1...𝑁))
6 eqid 2798 . . . . . . . . . . 11 (1...𝑁) = (1...𝑁)
7 madjusmdetlem2.s . . . . . . . . . . 11 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
8 eqid 2798 . . . . . . . . . . 11 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
9 eqid 2798 . . . . . . . . . . 11 (Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁)))
106, 7, 8, 9fzto1st 30795 . . . . . . . . . 10 (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
115, 10syl 17 . . . . . . . . 9 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
128, 9symgbasf1o 18495 . . . . . . . . 9 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
1311, 12syl 17 . . . . . . . 8 (𝜑𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
1413adantr 484 . . . . . . 7 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
15 fznatpl1 12956 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ∈ (1...𝑁))
161, 15sylan 583 . . . . . . 7 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ∈ (1...𝑁))
17 eqeq1 2802 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → (𝑖 = 1 ↔ 𝑥 = 1))
18 breq1 5033 . . . . . . . . . . . . . 14 (𝑖 = 𝑥 → (𝑖𝑁𝑥𝑁))
19 oveq1 7142 . . . . . . . . . . . . . 14 (𝑖 = 𝑥 → (𝑖 − 1) = (𝑥 − 1))
20 id 22 . . . . . . . . . . . . . 14 (𝑖 = 𝑥𝑖 = 𝑥)
2118, 19, 20ifbieq12d 4452 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → if(𝑖𝑁, (𝑖 − 1), 𝑖) = if(𝑥𝑁, (𝑥 − 1), 𝑥))
2217, 21ifbieq2d 4450 . . . . . . . . . . . 12 (𝑖 = 𝑥 → if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)) = if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)))
2322cbvmptv 5133 . . . . . . . . . . 11 (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖))) = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)))
247, 23eqtri 2821 . . . . . . . . . 10 𝑆 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)))
2524a1i 11 . . . . . . . . 9 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑆 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥))))
26 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1))
27 1red 10631 . . . . . . . . . . . . . . 15 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ∈ ℝ)
28 fz1ssnn 12933 . . . . . . . . . . . . . . . . . . 19 (1...(𝑁 − 1)) ⊆ ℕ
29 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ (1...(𝑁 − 1)))
3028, 29sseldi 3913 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℕ)
3130nnrpd 12417 . . . . . . . . . . . . . . . . 17 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℝ+)
3231adantr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 ∈ ℝ+)
3327, 32ltaddrp2d 12453 . . . . . . . . . . . . . . 15 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 < (𝑋 + 1))
3427, 33ltned 10765 . . . . . . . . . . . . . 14 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ≠ (𝑋 + 1))
3534necomd 3042 . . . . . . . . . . . . 13 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≠ 1)
3626, 35eqnetrd 3054 . . . . . . . . . . . 12 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 ≠ 1)
3736neneqd 2992 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥 = 1)
3837iffalsed 4436 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)) = if(𝑥𝑁, (𝑥 − 1), 𝑥))
391adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ)
4030nnnn0d 11943 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℕ0)
4139nnnn0d 11943 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ0)
42 elfzle2 12906 . . . . . . . . . . . . . . . 16 (𝑋 ∈ (1...(𝑁 − 1)) → 𝑋 ≤ (𝑁 − 1))
4329, 42syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ≤ (𝑁 − 1))
44 nn0ltlem1 12030 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑋 < 𝑁𝑋 ≤ (𝑁 − 1)))
4544biimpar 481 . . . . . . . . . . . . . . 15 (((𝑋 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑋 ≤ (𝑁 − 1)) → 𝑋 < 𝑁)
4640, 41, 43, 45syl21anc 836 . . . . . . . . . . . . . 14 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 < 𝑁)
47 nnltp1le 12026 . . . . . . . . . . . . . . 15 ((𝑋 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑋 < 𝑁 ↔ (𝑋 + 1) ≤ 𝑁))
4847biimpa 480 . . . . . . . . . . . . . 14 (((𝑋 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑋 < 𝑁) → (𝑋 + 1) ≤ 𝑁)
4930, 39, 46, 48syl21anc 836 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑋 + 1) ≤ 𝑁)
5049adantr 484 . . . . . . . . . . . 12 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≤ 𝑁)
5126, 50eqbrtrd 5052 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥𝑁)
5251iftrued 4433 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝑁, (𝑥 − 1), 𝑥) = (𝑥 − 1))
5326oveq1d 7150 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = ((𝑋 + 1) − 1))
5430nncnd 11641 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℂ)
55 1cnd 10625 . . . . . . . . . . . . 13 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 1 ∈ ℂ)
5654, 55pncand 10987 . . . . . . . . . . . 12 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → ((𝑋 + 1) − 1) = 𝑋)
5756adantr 484 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ((𝑋 + 1) − 1) = 𝑋)
5853, 57eqtrd 2833 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = 𝑋)
5938, 52, 583eqtrd 2837 . . . . . . . . 9 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝑁, if(𝑥𝑁, (𝑥 − 1), 𝑥)) = 𝑋)
6025, 59, 16, 29fvmptd 6752 . . . . . . . 8 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑆‘(𝑋 + 1)) = 𝑋)
6160idi 1 . . . . . . 7 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑆‘(𝑋 + 1)) = 𝑋)
62 f1ocnvfv 7013 . . . . . . . 8 ((𝑆:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑋 + 1) ∈ (1...𝑁)) → ((𝑆‘(𝑋 + 1)) = 𝑋 → (𝑆𝑋) = (𝑋 + 1)))
6362imp 410 . . . . . . 7 (((𝑆:(1...𝑁)–1-1-onto→(1...𝑁) ∧ (𝑋 + 1) ∈ (1...𝑁)) ∧ (𝑆‘(𝑋 + 1)) = 𝑋) → (𝑆𝑋) = (𝑋 + 1))
6414, 16, 61, 63syl21anc 836 . . . . . 6 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑆𝑋) = (𝑋 + 1))
6564fveq2d 6649 . . . . 5 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (𝑃‘(𝑆𝑋)) = (𝑃‘(𝑋 + 1)))
6665adantr 484 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑃‘(𝑆𝑋)) = (𝑃‘(𝑋 + 1)))
67 madjusmdetlem2.p . . . . . . 7 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
6820breq1d 5040 . . . . . . . . . 10 (𝑖 = 𝑥 → (𝑖𝐼𝑥𝐼))
6968, 19, 20ifbieq12d 4452 . . . . . . . . 9 (𝑖 = 𝑥 → if(𝑖𝐼, (𝑖 − 1), 𝑖) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
7017, 69ifbieq2d 4450 . . . . . . . 8 (𝑖 = 𝑥 → if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)) = if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)))
7170cbvmptv 5133 . . . . . . 7 (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖))) = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)))
7267, 71eqtri 2821 . . . . . 6 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)))
7372a1i 11 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥))))
7433, 26breqtrrd 5058 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 < 𝑥)
7527, 74ltned 10765 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 1 ≠ 𝑥)
7675necomd 3042 . . . . . . . . 9 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 ≠ 1)
7776neneqd 2992 . . . . . . . 8 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥 = 1)
7877iffalsed 4436 . . . . . . 7 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
7978adantlr 714 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
80 simpr 488 . . . . . . . 8 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1))
8130ad2antrr 725 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 ∈ ℕ)
82 fz1ssnn 12933 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ
83 madjusmdet.i . . . . . . . . . . 11 (𝜑𝐼 ∈ (1...𝑁))
8482, 83sseldi 3913 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
8584ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝐼 ∈ ℕ)
86 simplr 768 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑋 < 𝐼)
87 nnltp1le 12026 . . . . . . . . . 10 ((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) → (𝑋 < 𝐼 ↔ (𝑋 + 1) ≤ 𝐼))
8887biimpa 480 . . . . . . . . 9 (((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ 𝑋 < 𝐼) → (𝑋 + 1) ≤ 𝐼)
8981, 85, 86, 88syl21anc 836 . . . . . . . 8 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → (𝑋 + 1) ≤ 𝐼)
9080, 89eqbrtrd 5052 . . . . . . 7 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥𝐼)
9190iftrued 4433 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝐼, (𝑥 − 1), 𝑥) = (𝑥 − 1))
9258adantlr 714 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → (𝑥 − 1) = 𝑋)
9379, 91, 923eqtrd 2837 . . . . 5 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = 𝑋)
9416adantr 484 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑋 + 1) ∈ (1...𝑁))
95 simplr 768 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑋 ∈ (1...(𝑁 − 1)))
9673, 93, 94, 95fvmptd 6752 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → (𝑃‘(𝑋 + 1)) = 𝑋)
9766, 96eqtr2d 2834 . . 3 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑋 < 𝐼) → 𝑋 = (𝑃‘(𝑆𝑋)))
9865adantr 484 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑃‘(𝑆𝑋)) = (𝑃‘(𝑋 + 1)))
9972a1i 11 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → 𝑃 = (𝑥 ∈ (1...𝑁) ↦ if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥))))
10078adantlr 714 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = if(𝑥𝐼, (𝑥 − 1), 𝑥))
10130ad2antrr 725 . . . . . . . . . . . . 13 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑋 ∈ ℕ)
10284ad3antrrr 729 . . . . . . . . . . . . 13 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝐼 ∈ ℕ)
10326adantr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑥 = (𝑋 + 1))
104 simpr 488 . . . . . . . . . . . . . 14 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑥𝐼)
105103, 104eqbrtrrd 5054 . . . . . . . . . . . . 13 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → (𝑋 + 1) ≤ 𝐼)
10687biimpar 481 . . . . . . . . . . . . 13 (((𝑋 ∈ ℕ ∧ 𝐼 ∈ ℕ) ∧ (𝑋 + 1) ≤ 𝐼) → 𝑋 < 𝐼)
107101, 102, 105, 106syl21anc 836 . . . . . . . . . . . 12 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ 𝑥𝐼) → 𝑋 < 𝐼)
108107ex 416 . . . . . . . . . . 11 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (𝑥𝐼𝑋 < 𝐼))
109108con3d 155 . . . . . . . . . 10 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) → (¬ 𝑋 < 𝐼 → ¬ 𝑥𝐼))
110109imp 410 . . . . . . . . 9 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ 𝑥 = (𝑋 + 1)) ∧ ¬ 𝑋 < 𝐼) → ¬ 𝑥𝐼)
111110an32s 651 . . . . . . . 8 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → ¬ 𝑥𝐼)
112111iffalsed 4436 . . . . . . 7 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝐼, (𝑥 − 1), 𝑥) = 𝑥)
113 simpr 488 . . . . . . 7 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → 𝑥 = (𝑋 + 1))
114112, 113eqtrd 2833 . . . . . 6 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥𝐼, (𝑥 − 1), 𝑥) = (𝑋 + 1))
115100, 114eqtrd 2833 . . . . 5 ((((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) ∧ 𝑥 = (𝑋 + 1)) → if(𝑥 = 1, 𝐼, if(𝑥𝐼, (𝑥 − 1), 𝑥)) = (𝑋 + 1))
11616adantr 484 . . . . 5 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) ∈ (1...𝑁))
11799, 115, 116, 116fvmptd 6752 . . . 4 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑃‘(𝑋 + 1)) = (𝑋 + 1))
11898, 117eqtr2d 2834 . . 3 (((𝜑𝑋 ∈ (1...(𝑁 − 1))) ∧ ¬ 𝑋 < 𝐼) → (𝑋 + 1) = (𝑃‘(𝑆𝑋)))
11997, 118ifeqda 4460 . 2 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = (𝑃‘(𝑆𝑋)))
120 f1ocnv 6602 . . . . . 6 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
12111, 12, 1203syl 18 . . . . 5 (𝜑𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
122 f1ofun 6592 . . . . 5 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → Fun 𝑆)
123121, 122syl 17 . . . 4 (𝜑 → Fun 𝑆)
124123adantr 484 . . 3 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → Fun 𝑆)
125 fzdif2 30540 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
1263, 125syl 17 . . . . . . 7 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
127 difss 4059 . . . . . . 7 ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁)
128126, 127eqsstrrdi 3970 . . . . . 6 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
129 f1odm 6594 . . . . . . 7 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → dom 𝑆 = (1...𝑁))
130121, 129syl 17 . . . . . 6 (𝜑 → dom 𝑆 = (1...𝑁))
131128, 130sseqtrrd 3956 . . . . 5 (𝜑 → (1...(𝑁 − 1)) ⊆ dom 𝑆)
132131adantr 484 . . . 4 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → (1...(𝑁 − 1)) ⊆ dom 𝑆)
133132, 29sseldd 3916 . . 3 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ dom 𝑆)
134 fvco 6736 . . 3 ((Fun 𝑆𝑋 ∈ dom 𝑆) → ((𝑃𝑆)‘𝑋) = (𝑃‘(𝑆𝑋)))
135124, 133, 134syl2anc 587 . 2 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → ((𝑃𝑆)‘𝑋) = (𝑃‘(𝑆𝑋)))
136119, 135eqtr4d 2836 1 ((𝜑𝑋 ∈ (1...(𝑁 − 1))) → if(𝑋 < 𝐼, 𝑋, (𝑋 + 1)) = ((𝑃𝑆)‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  cdif 3878  wss 3881  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110  ccnv 5518  dom cdm 5519  ccom 5523  Fun wfun 6318  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  0cn0 11885  cuz 12231  +crp 12377  ...cfz 12885  Basecbs 16475  .rcmulr 16558  SymGrpcsymg 18487  CRingccrg 19291  ℤRHomczrh 20193   Mat cmat 21012   maDet cmdat 21189   maAdju cmadu 21237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-efmnd 18026  df-symg 18488  df-pmtr 18562
This theorem is referenced by:  madjusmdetlem3  31182
  Copyright terms: Public domain W3C validator