Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indfval Structured version   Visualization version   GIF version

Theorem indfval 32951
Description: Value of the indicator function. (Contributed by Thierry Arnoux, 13-Aug-2017.)
Assertion
Ref Expression
indfval ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))

Proof of Theorem indfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 indval 32948 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
213adant3 1133 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
3 simpr 486 . . . 4 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
43eleq1d 2819 . . 3 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → (𝑥𝐴𝑋𝐴))
54ifbid 4549 . 2 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → if(𝑥𝐴, 1, 0) = if(𝑋𝐴, 1, 0))
6 simp3 1139 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → 𝑋𝑂)
7 1re 11209 . . . 4 1 ∈ ℝ
8 0re 11211 . . . 4 0 ∈ ℝ
97, 8ifcli 4573 . . 3 if(𝑋𝐴, 1, 0) ∈ ℝ
109a1i 11 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → if(𝑋𝐴, 1, 0) ∈ ℝ)
112, 5, 6, 10fvmptd 7000 1 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3946  ifcif 4526  cmpt 5229  cfv 6539  cr 11104  0cc0 11105  1c1 11106  𝟭cind 32945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-i2m1 11173  ax-1ne0 11174  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-ov 7406  df-ind 32946
This theorem is referenced by:  ind1  32952  ind0  32953  ind1a  32954  eulerpartlemgvv  33312
  Copyright terms: Public domain W3C validator