Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indfval Structured version   Visualization version   GIF version

Theorem indfval 33014
Description: Value of the indicator function. (Contributed by Thierry Arnoux, 13-Aug-2017.)
Assertion
Ref Expression
indfval ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))

Proof of Theorem indfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 indval 33011 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
213adant3 1133 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
3 simpr 486 . . . 4 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
43eleq1d 2819 . . 3 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → (𝑥𝐴𝑋𝐴))
54ifbid 4552 . 2 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → if(𝑥𝐴, 1, 0) = if(𝑋𝐴, 1, 0))
6 simp3 1139 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → 𝑋𝑂)
7 1re 11214 . . . 4 1 ∈ ℝ
8 0re 11216 . . . 4 0 ∈ ℝ
97, 8ifcli 4576 . . 3 if(𝑋𝐴, 1, 0) ∈ ℝ
109a1i 11 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → if(𝑋𝐴, 1, 0) ∈ ℝ)
112, 5, 6, 10fvmptd 7006 1 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3949  ifcif 4529  cmpt 5232  cfv 6544  cr 11109  0cc0 11110  1c1 11111  𝟭cind 33008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-i2m1 11178  ax-1ne0 11179  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-ind 33009
This theorem is referenced by:  ind1  33015  ind0  33016  ind1a  33017  eulerpartlemgvv  33375
  Copyright terms: Public domain W3C validator