Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indfval Structured version   Visualization version   GIF version

Theorem indfval 31383
Description: Value of the indicator function. (Contributed by Thierry Arnoux, 13-Aug-2017.)
Assertion
Ref Expression
indfval ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))

Proof of Theorem indfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 indval 31380 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
213adant3 1129 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
3 simpr 488 . . . 4 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
43eleq1d 2877 . . 3 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → (𝑥𝐴𝑋𝐴))
54ifbid 4450 . 2 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → if(𝑥𝐴, 1, 0) = if(𝑋𝐴, 1, 0))
6 simp3 1135 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → 𝑋𝑂)
7 1re 10634 . . . 4 1 ∈ ℝ
8 0re 10636 . . . 4 0 ∈ ℝ
97, 8ifcli 4474 . . 3 if(𝑋𝐴, 1, 0) ∈ ℝ
109a1i 11 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → if(𝑋𝐴, 1, 0) ∈ ℝ)
112, 5, 6, 10fvmptd 6756 1 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wss 3884  ifcif 4428  cmpt 5113  cfv 6328  cr 10529  0cc0 10530  1c1 10531  𝟭cind 31377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-i2m1 10598  ax-1ne0 10599  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-ind 31378
This theorem is referenced by:  ind1  31384  ind0  31385  ind1a  31386  eulerpartlemgvv  31742
  Copyright terms: Public domain W3C validator