![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > indfval | Structured version Visualization version GIF version |
Description: Value of the indicator function. (Contributed by Thierry Arnoux, 13-Aug-2017.) |
Ref | Expression |
---|---|
indfval | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indval 33011 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) | |
2 | 1 | 3adant3 1133 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
3 | simpr 486 | . . . 4 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
4 | 3 | eleq1d 2819 | . . 3 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) ∧ 𝑥 = 𝑋) → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
5 | 4 | ifbid 4552 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) ∧ 𝑥 = 𝑋) → if(𝑥 ∈ 𝐴, 1, 0) = if(𝑋 ∈ 𝐴, 1, 0)) |
6 | simp3 1139 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → 𝑋 ∈ 𝑂) | |
7 | 1re 11214 | . . . 4 ⊢ 1 ∈ ℝ | |
8 | 0re 11216 | . . . 4 ⊢ 0 ∈ ℝ | |
9 | 7, 8 | ifcli 4576 | . . 3 ⊢ if(𝑋 ∈ 𝐴, 1, 0) ∈ ℝ |
10 | 9 | a1i 11 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → if(𝑋 ∈ 𝐴, 1, 0) ∈ ℝ) |
11 | 2, 5, 6, 10 | fvmptd 7006 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3949 ifcif 4529 ↦ cmpt 5232 ‘cfv 6544 ℝcr 11109 0cc0 11110 1c1 11111 𝟭cind 33008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-i2m1 11178 ax-1ne0 11179 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-ind 33009 |
This theorem is referenced by: ind1 33015 ind0 33016 ind1a 33017 eulerpartlemgvv 33375 |
Copyright terms: Public domain | W3C validator |