Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > indfval | Structured version Visualization version GIF version |
Description: Value of the indicator function. (Contributed by Thierry Arnoux, 13-Aug-2017.) |
Ref | Expression |
---|---|
indfval | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indval 32030 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) | |
2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥 ∈ 𝑂 ↦ if(𝑥 ∈ 𝐴, 1, 0))) |
3 | simpr 486 | . . . 4 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋) | |
4 | 3 | eleq1d 2821 | . . 3 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) ∧ 𝑥 = 𝑋) → (𝑥 ∈ 𝐴 ↔ 𝑋 ∈ 𝐴)) |
5 | 4 | ifbid 4488 | . 2 ⊢ (((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) ∧ 𝑥 = 𝑋) → if(𝑥 ∈ 𝐴, 1, 0) = if(𝑋 ∈ 𝐴, 1, 0)) |
6 | simp3 1138 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → 𝑋 ∈ 𝑂) | |
7 | 1re 11025 | . . . 4 ⊢ 1 ∈ ℝ | |
8 | 0re 11027 | . . . 4 ⊢ 0 ∈ ℝ | |
9 | 7, 8 | ifcli 4512 | . . 3 ⊢ if(𝑋 ∈ 𝐴, 1, 0) ∈ ℝ |
10 | 9 | a1i 11 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → if(𝑋 ∈ 𝐴, 1, 0) ∈ ℝ) |
11 | 2, 5, 6, 10 | fvmptd 6914 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ∧ 𝑋 ∈ 𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋 ∈ 𝐴, 1, 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 ifcif 4465 ↦ cmpt 5164 ‘cfv 6458 ℝcr 10920 0cc0 10921 1c1 10922 𝟭cind 32027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-i2m1 10989 ax-1ne0 10990 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-ind 32028 |
This theorem is referenced by: ind1 32034 ind0 32035 ind1a 32036 eulerpartlemgvv 32392 |
Copyright terms: Public domain | W3C validator |