Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indfval Structured version   Visualization version   GIF version

Theorem indfval 32787
Description: Value of the indicator function. (Contributed by Thierry Arnoux, 13-Aug-2017.)
Assertion
Ref Expression
indfval ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))

Proof of Theorem indfval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 indval 32784 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
213adant3 1132 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → ((𝟭‘𝑂)‘𝐴) = (𝑥𝑂 ↦ if(𝑥𝐴, 1, 0)))
3 simpr 484 . . . 4 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → 𝑥 = 𝑋)
43eleq1d 2814 . . 3 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → (𝑥𝐴𝑋𝐴))
54ifbid 4520 . 2 (((𝑂𝑉𝐴𝑂𝑋𝑂) ∧ 𝑥 = 𝑋) → if(𝑥𝐴, 1, 0) = if(𝑋𝐴, 1, 0))
6 simp3 1138 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → 𝑋𝑂)
7 1re 11192 . . . 4 1 ∈ ℝ
8 0re 11194 . . . 4 0 ∈ ℝ
97, 8ifcli 4544 . . 3 if(𝑋𝐴, 1, 0) ∈ ℝ
109a1i 11 . 2 ((𝑂𝑉𝐴𝑂𝑋𝑂) → if(𝑋𝐴, 1, 0) ∈ ℝ)
112, 5, 6, 10fvmptd 6982 1 ((𝑂𝑉𝐴𝑂𝑋𝑂) → (((𝟭‘𝑂)‘𝐴)‘𝑋) = if(𝑋𝐴, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3922  ifcif 4496  cmpt 5196  cfv 6519  cr 11085  0cc0 11086  1c1 11087  𝟭cind 32781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-i2m1 11154  ax-1ne0 11155  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-ind 32782
This theorem is referenced by:  ind1  32788  ind0  32789  ind1a  32790  eulerpartlemgvv  34375
  Copyright terms: Public domain W3C validator