MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp3 Structured version   Visualization version   GIF version

Theorem iscnp3 21854
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". (Contributed by NM, 15-May-2007.)
Assertion
Ref Expression
iscnp3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑃,𝑦

Proof of Theorem iscnp3
StepHypRef Expression
1 iscnp 21847 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
2 ffun 6519 . . . . . . . . . 10 (𝐹:𝑋𝑌 → Fun 𝐹)
32ad2antlr 725 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → Fun 𝐹)
4 toponss 21537 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
54adantlr 713 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → 𝑥𝑋)
6 fdm 6524 . . . . . . . . . . 11 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
76ad2antlr 725 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → dom 𝐹 = 𝑋)
85, 7sseqtrrd 4010 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → 𝑥 ⊆ dom 𝐹)
9 funimass3 6826 . . . . . . . . 9 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → ((𝐹𝑥) ⊆ 𝑦𝑥 ⊆ (𝐹𝑦)))
103, 8, 9syl2anc 586 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → ((𝐹𝑥) ⊆ 𝑦𝑥 ⊆ (𝐹𝑦)))
1110anbi2d 630 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))
1211rexbidva 3298 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))
1312imbi2d 343 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) → (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦)))))
1413ralbidv 3199 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦)))))
1514pm5.32da 581 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
16153ad2ant1 1129 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
171, 16bitrd 281 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938  ccnv 5556  dom cdm 5557  cima 5560  Fun wfun 6351  wf 6353  cfv 6357  (class class class)co 7158  TopOnctopon 21520   CnP ccnp 21835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-top 21504  df-topon 21521  df-cnp 21838
This theorem is referenced by:  cncnpi  21888  cnpdis  21903
  Copyright terms: Public domain W3C validator