Proof of Theorem iscnp3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iscnp 23245 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) | 
| 2 |  | ffun 6739 | . . . . . . . . . 10
⊢ (𝐹:𝑋⟶𝑌 → Fun 𝐹) | 
| 3 | 2 | ad2antlr 727 | . . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐽) → Fun 𝐹) | 
| 4 |  | toponss 22933 | . . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | 
| 5 | 4 | adantlr 715 | . . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ 𝑋) | 
| 6 |  | fdm 6745 | . . . . . . . . . . 11
⊢ (𝐹:𝑋⟶𝑌 → dom 𝐹 = 𝑋) | 
| 7 | 6 | ad2antlr 727 | . . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐽) → dom 𝐹 = 𝑋) | 
| 8 | 5, 7 | sseqtrrd 4021 | . . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐽) → 𝑥 ⊆ dom 𝐹) | 
| 9 |  | funimass3 7074 | . . . . . . . . 9
⊢ ((Fun
𝐹 ∧ 𝑥 ⊆ dom 𝐹) → ((𝐹 “ 𝑥) ⊆ 𝑦 ↔ 𝑥 ⊆ (◡𝐹 “ 𝑦))) | 
| 10 | 3, 8, 9 | syl2anc 584 | . . . . . . . 8
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐽) → ((𝐹 “ 𝑥) ⊆ 𝑦 ↔ 𝑥 ⊆ (◡𝐹 “ 𝑦))) | 
| 11 | 10 | anbi2d 630 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋⟶𝑌) ∧ 𝑥 ∈ 𝐽) → ((𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))) | 
| 12 | 11 | rexbidva 3177 | . . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦) ↔ ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))) | 
| 13 | 12 | imbi2d 340 | . . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → (((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦))))) | 
| 14 | 13 | ralbidv 3178 | . . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋⟶𝑌) → (∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦))))) | 
| 15 | 14 | pm5.32da 579 | . . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) | 
| 16 | 15 | 3ad2ant1 1134 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) | 
| 17 | 1, 16 | bitrd 279 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) |