MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscnp3 Structured version   Visualization version   GIF version

Theorem iscnp3 23131
Description: The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". (Contributed by NM, 15-May-2007.)
Assertion
Ref Expression
iscnp3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑃,𝑦

Proof of Theorem iscnp3
StepHypRef Expression
1 iscnp 23124 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)))))
2 ffun 6691 . . . . . . . . . 10 (𝐹:𝑋𝑌 → Fun 𝐹)
32ad2antlr 727 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → Fun 𝐹)
4 toponss 22814 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
54adantlr 715 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → 𝑥𝑋)
6 fdm 6697 . . . . . . . . . . 11 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
76ad2antlr 727 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → dom 𝐹 = 𝑋)
85, 7sseqtrrd 3984 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → 𝑥 ⊆ dom 𝐹)
9 funimass3 7026 . . . . . . . . 9 ((Fun 𝐹𝑥 ⊆ dom 𝐹) → ((𝐹𝑥) ⊆ 𝑦𝑥 ⊆ (𝐹𝑦)))
103, 8, 9syl2anc 584 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → ((𝐹𝑥) ⊆ 𝑦𝑥 ⊆ (𝐹𝑦)))
1110anbi2d 630 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) ∧ 𝑥𝐽) → ((𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))
1211rexbidva 3155 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) → (∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦) ↔ ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))
1312imbi2d 340 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) → (((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦)))))
1413ralbidv 3156 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋𝑌) → (∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦)) ↔ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦)))))
1514pm5.32da 579 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
16153ad2ant1 1133 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → ((𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥 ∧ (𝐹𝑥) ⊆ 𝑦))) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
171, 16bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦𝐾 ((𝐹𝑃) ∈ 𝑦 → ∃𝑥𝐽 (𝑃𝑥𝑥 ⊆ (𝐹𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914  ccnv 5637  dom cdm 5638  cima 5641  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  TopOnctopon 22797   CnP ccnp 23112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-top 22781  df-topon 22798  df-cnp 23115
This theorem is referenced by:  cncnpi  23165  cnpdis  23180
  Copyright terms: Public domain W3C validator