Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0f Structured version   Visualization version   GIF version

Theorem lfl0f 39058
Description: The zero function is a functional. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl0f.d 𝐷 = (Scalar‘𝑊)
lfl0f.o 0 = (0g𝐷)
lfl0f.v 𝑉 = (Base‘𝑊)
lfl0f.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl0f (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹)

Proof of Theorem lfl0f
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfl0f.o . . . . 5 0 = (0g𝐷)
21fvexi 6836 . . . 4 0 ∈ V
32fconst 6710 . . 3 (𝑉 × { 0 }):𝑉⟶{ 0 }
4 lfl0f.d . . . . 5 𝐷 = (Scalar‘𝑊)
5 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
64, 5, 1lmod0cl 20791 . . . 4 (𝑊 ∈ LMod → 0 ∈ (Base‘𝐷))
76snssd 4760 . . 3 (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝐷))
8 fss 6668 . . 3 (((𝑉 × { 0 }):𝑉⟶{ 0 } ∧ { 0 } ⊆ (Base‘𝐷)) → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷))
93, 7, 8sylancr 587 . 2 (𝑊 ∈ LMod → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷))
104lmodring 20771 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
1110ad2antrr 726 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝐷 ∈ Ring)
12 simplrl 776 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑟 ∈ (Base‘𝐷))
13 eqid 2729 . . . . . . . . 9 (.r𝐷) = (.r𝐷)
145, 13, 1ringrz 20179 . . . . . . . 8 ((𝐷 ∈ Ring ∧ 𝑟 ∈ (Base‘𝐷)) → (𝑟(.r𝐷) 0 ) = 0 )
1511, 12, 14syl2anc 584 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟(.r𝐷) 0 ) = 0 )
1615oveq1d 7364 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ) = ( 0 (+g𝐷) 0 ))
17 ringgrp 20123 . . . . . . . 8 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
1811, 17syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝐷 ∈ Grp)
195, 1grpidcl 18844 . . . . . . 7 (𝐷 ∈ Grp → 0 ∈ (Base‘𝐷))
20 eqid 2729 . . . . . . . 8 (+g𝐷) = (+g𝐷)
215, 20, 1grplid 18846 . . . . . . 7 ((𝐷 ∈ Grp ∧ 0 ∈ (Base‘𝐷)) → ( 0 (+g𝐷) 0 ) = 0 )
2218, 19, 21syl2anc2 585 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ( 0 (+g𝐷) 0 ) = 0 )
2316, 22eqtrd 2764 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ) = 0 )
24 simplrr 777 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑥𝑉)
252fvconst2 7140 . . . . . . . 8 (𝑥𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 )
2624, 25syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘𝑥) = 0 )
2726oveq2d 7365 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥)) = (𝑟(.r𝐷) 0 ))
282fvconst2 7140 . . . . . . 7 (𝑦𝑉 → ((𝑉 × { 0 })‘𝑦) = 0 )
2928adantl 481 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘𝑦) = 0 )
3027, 29oveq12d 7367 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)) = ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ))
31 simpll 766 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑊 ∈ LMod)
32 lfl0f.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
33 eqid 2729 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
3432, 4, 33, 5lmodvscl 20781 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
3531, 12, 24, 34syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
36 simpr 484 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑦𝑉)
37 eqid 2729 . . . . . . . 8 (+g𝑊) = (+g𝑊)
3832, 37lmodvacl 20778 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
3931, 35, 36, 38syl3anc 1373 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
402fvconst2 7140 . . . . . 6 (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉 → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = 0 )
4139, 40syl 17 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = 0 )
4223, 30, 413eqtr4rd 2775 . . . 4 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
4342ralrimiva 3121 . . 3 ((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) → ∀𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
4443ralrimivva 3172 . 2 (𝑊 ∈ LMod → ∀𝑟 ∈ (Base‘𝐷)∀𝑥𝑉𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
45 lfl0f.f . . 3 𝐹 = (LFnl‘𝑊)
4632, 37, 4, 33, 5, 20, 13, 45islfl 39049 . 2 (𝑊 ∈ LMod → ((𝑉 × { 0 }) ∈ 𝐹 ↔ ((𝑉 × { 0 }):𝑉⟶(Base‘𝐷) ∧ ∀𝑟 ∈ (Base‘𝐷)∀𝑥𝑉𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))))
479, 44, 46mpbir2and 713 1 (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903  {csn 4577   × cxp 5617  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  Grpcgrp 18812  Ringcrg 20118  LModclmod 20763  LFnlclfn 39046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-lmod 20765  df-lfl 39047
This theorem is referenced by:  lkr0f  39083  lkrscss  39087  ldualgrplem  39134  ldual0v  39139  ldual0vcl  39140  lclkrlem1  41495  lclkr  41522  lclkrs  41528
  Copyright terms: Public domain W3C validator