Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0f Structured version   Visualization version   GIF version

Theorem lfl0f 37083
Description: The zero function is a functional. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl0f.d 𝐷 = (Scalar‘𝑊)
lfl0f.o 0 = (0g𝐷)
lfl0f.v 𝑉 = (Base‘𝑊)
lfl0f.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl0f (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹)

Proof of Theorem lfl0f
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfl0f.o . . . . 5 0 = (0g𝐷)
21fvexi 6788 . . . 4 0 ∈ V
32fconst 6660 . . 3 (𝑉 × { 0 }):𝑉⟶{ 0 }
4 lfl0f.d . . . . 5 𝐷 = (Scalar‘𝑊)
5 eqid 2738 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
64, 5, 1lmod0cl 20149 . . . 4 (𝑊 ∈ LMod → 0 ∈ (Base‘𝐷))
76snssd 4742 . . 3 (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝐷))
8 fss 6617 . . 3 (((𝑉 × { 0 }):𝑉⟶{ 0 } ∧ { 0 } ⊆ (Base‘𝐷)) → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷))
93, 7, 8sylancr 587 . 2 (𝑊 ∈ LMod → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷))
104lmodring 20131 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
1110ad2antrr 723 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝐷 ∈ Ring)
12 simplrl 774 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑟 ∈ (Base‘𝐷))
13 eqid 2738 . . . . . . . . 9 (.r𝐷) = (.r𝐷)
145, 13, 1ringrz 19827 . . . . . . . 8 ((𝐷 ∈ Ring ∧ 𝑟 ∈ (Base‘𝐷)) → (𝑟(.r𝐷) 0 ) = 0 )
1511, 12, 14syl2anc 584 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟(.r𝐷) 0 ) = 0 )
1615oveq1d 7290 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ) = ( 0 (+g𝐷) 0 ))
17 ringgrp 19788 . . . . . . . 8 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
1811, 17syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝐷 ∈ Grp)
195, 1grpidcl 18607 . . . . . . 7 (𝐷 ∈ Grp → 0 ∈ (Base‘𝐷))
20 eqid 2738 . . . . . . . 8 (+g𝐷) = (+g𝐷)
215, 20, 1grplid 18609 . . . . . . 7 ((𝐷 ∈ Grp ∧ 0 ∈ (Base‘𝐷)) → ( 0 (+g𝐷) 0 ) = 0 )
2218, 19, 21syl2anc2 585 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ( 0 (+g𝐷) 0 ) = 0 )
2316, 22eqtrd 2778 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ) = 0 )
24 simplrr 775 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑥𝑉)
252fvconst2 7079 . . . . . . . 8 (𝑥𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 )
2624, 25syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘𝑥) = 0 )
2726oveq2d 7291 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥)) = (𝑟(.r𝐷) 0 ))
282fvconst2 7079 . . . . . . 7 (𝑦𝑉 → ((𝑉 × { 0 })‘𝑦) = 0 )
2928adantl 482 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘𝑦) = 0 )
3027, 29oveq12d 7293 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)) = ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ))
31 simpll 764 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑊 ∈ LMod)
32 lfl0f.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
33 eqid 2738 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
3432, 4, 33, 5lmodvscl 20140 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
3531, 12, 24, 34syl3anc 1370 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
36 simpr 485 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑦𝑉)
37 eqid 2738 . . . . . . . 8 (+g𝑊) = (+g𝑊)
3832, 37lmodvacl 20137 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
3931, 35, 36, 38syl3anc 1370 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
402fvconst2 7079 . . . . . 6 (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉 → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = 0 )
4139, 40syl 17 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = 0 )
4223, 30, 413eqtr4rd 2789 . . . 4 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
4342ralrimiva 3103 . . 3 ((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) → ∀𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
4443ralrimivva 3123 . 2 (𝑊 ∈ LMod → ∀𝑟 ∈ (Base‘𝐷)∀𝑥𝑉𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
45 lfl0f.f . . 3 𝐹 = (LFnl‘𝑊)
4632, 37, 4, 33, 5, 20, 13, 45islfl 37074 . 2 (𝑊 ∈ LMod → ((𝑉 × { 0 }) ∈ 𝐹 ↔ ((𝑉 × { 0 }):𝑉⟶(Base‘𝐷) ∧ ∀𝑟 ∈ (Base‘𝐷)∀𝑥𝑉𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))))
479, 44, 46mpbir2and 710 1 (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  {csn 4561   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  Grpcgrp 18577  Ringcrg 19783  LModclmod 20123  LFnlclfn 37071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-mgp 19721  df-ring 19785  df-lmod 20125  df-lfl 37072
This theorem is referenced by:  lkr0f  37108  lkrscss  37112  ldualgrplem  37159  ldual0v  37164  ldual0vcl  37165  lclkrlem1  39520  lclkr  39547  lclkrs  39553
  Copyright terms: Public domain W3C validator