| Step | Hyp | Ref
| Expression |
| 1 | | lfl0f.o |
. . . . 5
⊢ 0 =
(0g‘𝐷) |
| 2 | 1 | fvexi 6919 |
. . . 4
⊢ 0 ∈
V |
| 3 | 2 | fconst 6793 |
. . 3
⊢ (𝑉 × { 0 }):𝑉⟶{ 0 } |
| 4 | | lfl0f.d |
. . . . 5
⊢ 𝐷 = (Scalar‘𝑊) |
| 5 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 6 | 4, 5, 1 | lmod0cl 20887 |
. . . 4
⊢ (𝑊 ∈ LMod → 0 ∈
(Base‘𝐷)) |
| 7 | 6 | snssd 4808 |
. . 3
⊢ (𝑊 ∈ LMod → { 0 } ⊆
(Base‘𝐷)) |
| 8 | | fss 6751 |
. . 3
⊢ (((𝑉 × { 0 }):𝑉⟶{ 0 } ∧ { 0 } ⊆
(Base‘𝐷)) →
(𝑉 × { 0 }):𝑉⟶(Base‘𝐷)) |
| 9 | 3, 7, 8 | sylancr 587 |
. 2
⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷)) |
| 10 | 4 | lmodring 20867 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝐷 ∈ Ring) |
| 11 | 10 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝐷 ∈ Ring) |
| 12 | | simplrl 776 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝑟 ∈ (Base‘𝐷)) |
| 13 | | eqid 2736 |
. . . . . . . . 9
⊢
(.r‘𝐷) = (.r‘𝐷) |
| 14 | 5, 13, 1 | ringrz 20292 |
. . . . . . . 8
⊢ ((𝐷 ∈ Ring ∧ 𝑟 ∈ (Base‘𝐷)) → (𝑟(.r‘𝐷) 0 ) = 0 ) |
| 15 | 11, 12, 14 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → (𝑟(.r‘𝐷) 0 ) = 0 ) |
| 16 | 15 | oveq1d 7447 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑟(.r‘𝐷) 0
)(+g‘𝐷)
0 ) = (
0
(+g‘𝐷)
0
)) |
| 17 | | ringgrp 20236 |
. . . . . . . 8
⊢ (𝐷 ∈ Ring → 𝐷 ∈ Grp) |
| 18 | 11, 17 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝐷 ∈ Grp) |
| 19 | 5, 1 | grpidcl 18984 |
. . . . . . 7
⊢ (𝐷 ∈ Grp → 0 ∈
(Base‘𝐷)) |
| 20 | | eqid 2736 |
. . . . . . . 8
⊢
(+g‘𝐷) = (+g‘𝐷) |
| 21 | 5, 20, 1 | grplid 18986 |
. . . . . . 7
⊢ ((𝐷 ∈ Grp ∧ 0 ∈
(Base‘𝐷)) → (
0
(+g‘𝐷)
0 ) =
0
) |
| 22 | 18, 19, 21 | syl2anc2 585 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ( 0 (+g‘𝐷) 0 ) = 0 ) |
| 23 | 16, 22 | eqtrd 2776 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑟(.r‘𝐷) 0
)(+g‘𝐷)
0 ) =
0
) |
| 24 | | simplrr 777 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝑥 ∈ 𝑉) |
| 25 | 2 | fvconst2 7225 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 ) |
| 26 | 24, 25 | syl 17 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑉 × { 0 })‘𝑥) = 0 ) |
| 27 | 26 | oveq2d 7448 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → (𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥)) = (𝑟(.r‘𝐷) 0 )) |
| 28 | 2 | fvconst2 7225 |
. . . . . . 7
⊢ (𝑦 ∈ 𝑉 → ((𝑉 × { 0 })‘𝑦) = 0 ) |
| 29 | 28 | adantl 481 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑉 × { 0 })‘𝑦) = 0 ) |
| 30 | 27, 29 | oveq12d 7450 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥))(+g‘𝐷)((𝑉 × { 0 })‘𝑦)) = ((𝑟(.r‘𝐷) 0
)(+g‘𝐷)
0
)) |
| 31 | | simpll 766 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 32 | | lfl0f.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑊) |
| 33 | | eqid 2736 |
. . . . . . . . 9
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 34 | 32, 4, 33, 5 | lmodvscl 20877 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉) → (𝑟( ·𝑠
‘𝑊)𝑥) ∈ 𝑉) |
| 35 | 31, 12, 24, 34 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → (𝑟( ·𝑠
‘𝑊)𝑥) ∈ 𝑉) |
| 36 | | simpr 484 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → 𝑦 ∈ 𝑉) |
| 37 | | eqid 2736 |
. . . . . . . 8
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 38 | 32, 37 | lmodvacl 20874 |
. . . . . . 7
⊢ ((𝑊 ∈ LMod ∧ (𝑟(
·𝑠 ‘𝑊)𝑥) ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → ((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ 𝑉) |
| 39 | 31, 35, 36, 38 | syl3anc 1372 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑟( ·𝑠
‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ 𝑉) |
| 40 | 2 | fvconst2 7225 |
. . . . . 6
⊢ (((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦) ∈ 𝑉 → ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = 0 ) |
| 41 | 39, 40 | syl 17 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = 0 ) |
| 42 | 23, 30, 41 | 3eqtr4rd 2787 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥))(+g‘𝐷)((𝑉 × { 0 })‘𝑦))) |
| 43 | 42 | ralrimiva 3145 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥 ∈ 𝑉)) → ∀𝑦 ∈ 𝑉 ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥))(+g‘𝐷)((𝑉 × { 0 })‘𝑦))) |
| 44 | 43 | ralrimivva 3201 |
. 2
⊢ (𝑊 ∈ LMod →
∀𝑟 ∈
(Base‘𝐷)∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥))(+g‘𝐷)((𝑉 × { 0 })‘𝑦))) |
| 45 | | lfl0f.f |
. . 3
⊢ 𝐹 = (LFnl‘𝑊) |
| 46 | 32, 37, 4, 33, 5, 20, 13, 45 | islfl 39062 |
. 2
⊢ (𝑊 ∈ LMod → ((𝑉 × { 0 }) ∈ 𝐹 ↔ ((𝑉 × { 0 }):𝑉⟶(Base‘𝐷) ∧ ∀𝑟 ∈ (Base‘𝐷)∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ((𝑉 × { 0 })‘((𝑟(
·𝑠 ‘𝑊)𝑥)(+g‘𝑊)𝑦)) = ((𝑟(.r‘𝐷)((𝑉 × { 0 })‘𝑥))(+g‘𝐷)((𝑉 × { 0 })‘𝑦))))) |
| 47 | 9, 44, 46 | mpbir2and 713 |
1
⊢ (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹) |