Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0f Structured version   Visualization version   GIF version

Theorem lfl0f 36365
Description: The zero function is a functional. (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
lfl0f.d 𝐷 = (Scalar‘𝑊)
lfl0f.o 0 = (0g𝐷)
lfl0f.v 𝑉 = (Base‘𝑊)
lfl0f.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl0f (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹)

Proof of Theorem lfl0f
Dummy variables 𝑥 𝑟 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfl0f.o . . . . 5 0 = (0g𝐷)
21fvexi 6659 . . . 4 0 ∈ V
32fconst 6539 . . 3 (𝑉 × { 0 }):𝑉⟶{ 0 }
4 lfl0f.d . . . . 5 𝐷 = (Scalar‘𝑊)
5 eqid 2798 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
64, 5, 1lmod0cl 19653 . . . 4 (𝑊 ∈ LMod → 0 ∈ (Base‘𝐷))
76snssd 4702 . . 3 (𝑊 ∈ LMod → { 0 } ⊆ (Base‘𝐷))
8 fss 6501 . . 3 (((𝑉 × { 0 }):𝑉⟶{ 0 } ∧ { 0 } ⊆ (Base‘𝐷)) → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷))
93, 7, 8sylancr 590 . 2 (𝑊 ∈ LMod → (𝑉 × { 0 }):𝑉⟶(Base‘𝐷))
104lmodring 19635 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
1110ad2antrr 725 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝐷 ∈ Ring)
12 simplrl 776 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑟 ∈ (Base‘𝐷))
13 eqid 2798 . . . . . . . . 9 (.r𝐷) = (.r𝐷)
145, 13, 1ringrz 19334 . . . . . . . 8 ((𝐷 ∈ Ring ∧ 𝑟 ∈ (Base‘𝐷)) → (𝑟(.r𝐷) 0 ) = 0 )
1511, 12, 14syl2anc 587 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟(.r𝐷) 0 ) = 0 )
1615oveq1d 7150 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ) = ( 0 (+g𝐷) 0 ))
17 ringgrp 19295 . . . . . . . 8 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
1811, 17syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝐷 ∈ Grp)
195, 1grpidcl 18123 . . . . . . 7 (𝐷 ∈ Grp → 0 ∈ (Base‘𝐷))
20 eqid 2798 . . . . . . . 8 (+g𝐷) = (+g𝐷)
215, 20, 1grplid 18125 . . . . . . 7 ((𝐷 ∈ Grp ∧ 0 ∈ (Base‘𝐷)) → ( 0 (+g𝐷) 0 ) = 0 )
2218, 19, 21syl2anc2 588 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ( 0 (+g𝐷) 0 ) = 0 )
2316, 22eqtrd 2833 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ) = 0 )
24 simplrr 777 . . . . . . . 8 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑥𝑉)
252fvconst2 6943 . . . . . . . 8 (𝑥𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 )
2624, 25syl 17 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘𝑥) = 0 )
2726oveq2d 7151 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥)) = (𝑟(.r𝐷) 0 ))
282fvconst2 6943 . . . . . . 7 (𝑦𝑉 → ((𝑉 × { 0 })‘𝑦) = 0 )
2928adantl 485 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘𝑦) = 0 )
3027, 29oveq12d 7153 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)) = ((𝑟(.r𝐷) 0 )(+g𝐷) 0 ))
31 simpll 766 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑊 ∈ LMod)
32 lfl0f.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
33 eqid 2798 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
3432, 4, 33, 5lmodvscl 19644 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
3531, 12, 24, 34syl3anc 1368 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉)
36 simpr 488 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → 𝑦𝑉)
37 eqid 2798 . . . . . . . 8 (+g𝑊) = (+g𝑊)
3832, 37lmodvacl 19641 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑟( ·𝑠𝑊)𝑥) ∈ 𝑉𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
3931, 35, 36, 38syl3anc 1368 . . . . . 6 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉)
402fvconst2 6943 . . . . . 6 (((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦) ∈ 𝑉 → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = 0 )
4139, 40syl 17 . . . . 5 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = 0 )
4223, 30, 413eqtr4rd 2844 . . . 4 (((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) ∧ 𝑦𝑉) → ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
4342ralrimiva 3149 . . 3 ((𝑊 ∈ LMod ∧ (𝑟 ∈ (Base‘𝐷) ∧ 𝑥𝑉)) → ∀𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
4443ralrimivva 3156 . 2 (𝑊 ∈ LMod → ∀𝑟 ∈ (Base‘𝐷)∀𝑥𝑉𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))
45 lfl0f.f . . 3 𝐹 = (LFnl‘𝑊)
4632, 37, 4, 33, 5, 20, 13, 45islfl 36356 . 2 (𝑊 ∈ LMod → ((𝑉 × { 0 }) ∈ 𝐹 ↔ ((𝑉 × { 0 }):𝑉⟶(Base‘𝐷) ∧ ∀𝑟 ∈ (Base‘𝐷)∀𝑥𝑉𝑦𝑉 ((𝑉 × { 0 })‘((𝑟( ·𝑠𝑊)𝑥)(+g𝑊)𝑦)) = ((𝑟(.r𝐷)((𝑉 × { 0 })‘𝑥))(+g𝐷)((𝑉 × { 0 })‘𝑦)))))
479, 44, 46mpbir2and 712 1 (𝑊 ∈ LMod → (𝑉 × { 0 }) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881  {csn 4525   × cxp 5517  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  Grpcgrp 18095  Ringcrg 19290  LModclmod 19627  LFnlclfn 36353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-mgp 19233  df-ring 19292  df-lmod 19629  df-lfl 36354
This theorem is referenced by:  lkr0f  36390  lkrscss  36394  ldualgrplem  36441  ldual0v  36446  ldual0vcl  36447  lclkrlem1  38802  lclkr  38829  lclkrs  38835
  Copyright terms: Public domain W3C validator